Cavendish Farms: Heat Recovery Project Update

ENGN 3720

13 March 2020

UNIVERSITY of Prince Edward ISLAND

VANtech Design: Mike Arsenault, Nick van der Velden, Leslie Noye

••••••

Introduction

- Project Management Update
 - Schedule
 - Budget
 - Materials
 - Labor
 - Risks
- Final Prototype and Plan
 - Methodology (What, Why, How)
- Final Design Definition
 - Requirements Met
 - Design Decisions
- Next Steps

Project Management Update

- Recently completed
 - Mock-up built and ready for testing
 - In house testing
- Current
 - Mock-up data analysis
 - Formulation of conclusions
- Future
 - Local testing at client site
 - Detailed analysis
 - Recommendations to client
 - Semester close-out

Schedule

3.0 Test & Verification Review	4.0 Detailed Design Review & Prototype Release							
3.1 Results of Test and verification activities	4.1 Final design document							
Run testing, defined in test plan	Divide work and complete section(s) for report, as outlined	0%	3-10-20	4-1-20	23			
math model completed								
assess data	4.2 Demonstration of requirements verification							
rework test plan if necessary	set up time with client	0%	3-10-20	3-12-20	3			
run more testing if necessary	Compile a list of the fulfilled requirements	100%	3-10-20	3-13-20	4			
testing for primary requirements completed	Deconstruct Mock-up	0%	3-25-20	4-20-20	27			
Divide work and complete section(s) for report, as outlined			2.25.22					
3.2 Final Design	Hand sand & crack fill	0%	3-25-20	4-20-20	27			
Compile list of specification changes required based on outcome o	Paint Mock-up	0%	3-25-20	4-20-20	27			
Install Insulation wrap	Reconstruct Mock-up	0%	3-25-20	4-20-20	27			
Install Pressure Sensors	Design Labels & Logos	0%	3-25-20	4-20-20	27			
Final Testing (Water)	Prints/Etch Lables & Logos	0%	3-25-20	4-20-20	27			
Analyze Test Data (Water)					_			
Final Testing (Steam)	Set up and trial system	0%	4-20-20	4-22-20	3			
Analyze Test Data (Steam)	troubleshoot system if necessary to ensure proper operation prior to demonstration	0%	4-21-20	4-22-20	2			
Draw Conclusions from Testing	Prepare Expo presentation	0%	4-20-20	4-22-20	3			
Divide work and complete section(s) for report, as outlined	practice Expo presentation	0%	4-22-20	4-24-20	3			
3.3 Prototype Refinement Plans	Dhysical demonstration to client (video site visit most system)	00/	4.1.20	4 5 20	-			
Complete requirement analysis to ensure prototype satisfies prima	Physical demonstration to client (video, site visit, mock system)	0%	4-1-20	4-5-20	5			
If primary requirement has not been achieved iterate process	4.3 Operational prototype							
Review time constraints to assess potential to deliver secondary re	Write report outlining our recommendations for implementation and sale up within the facility	0%	3-20-20	4-1-20	13			

Budget: Materials

				VANted	h Desigr	1			
					l Journa				
	<u> </u>			Term En					
Date	Account	Ref.	Debit	Credit	Date	Account	Ref.	Debit	Credit
46.5			44.050.06	2	019		07050	40.040.04	
16-Dec	McMaster Carr: Various Components		\$1,252.06	44 050 00	16-Dec	Omega: Various Components		\$2,219.34	
	Cash Budget	27955		\$1,252.06		Cash Budget	27953		\$2,219.34
16-Dec	Diverter Valves	27954	\$168.91						
10 000	Cash Budget	27954	Ģ100.51	\$168.91					
	cash baaget	2,331		Ģ100.51					
				2	020				
02-Jan	Adjusted: McMaster Carr Various Components	25539	\$2,078.55		02-Feb	Adjusted: Plywood	26076	\$27.32	
	McMaster Carr: Various Components			\$1,252.06		Cash Budget	28562	\$1.40	
	Cash Budget	27955		\$826.49		Plywood	28562		\$28.72
02-Jan	Adjusted: Omega Various Components	25537	\$2,177.04		02-Feb	Adjusted: McMaster Carr Various Components	26136	\$117.71	
	Cash Budget	27953	\$42.30			McMaster Carr Various Components	28562		\$57.80
	Omega Various Components	27953	į	\$2,219.34		Cash Budget	28562		\$57.80
02-Jan	Adjusted: Diverter Valves	25538	\$139.43		12-Feb	Thermocouple Connector	29096	\$43.80	
	Cash Budget	27954	\$29.48			Cash Budget	29096		\$43.80
	Diverter Valves	27954		\$168.91					
					02-Mar	Adjusted: Thermocouple Connector	26617	\$96.46	
20-Jan	Plywood	28562	\$28.72			Thermocouple Connector	29096		\$43.80
	Cash Budget	28562		\$28.72		Cash Budget	29096		\$52.66
21-Jan	McMaster Carr Various Components	28597	\$57.80			Total Cost of Material			
	Cash Budget	28597		\$57.80		Adjusted: Total Cost of Material	#####	\$4,636.51	.

Budget: Labor

Labour Cost Breakdown									
Employee	Wages	Labour hrs		Total Cost					
Engineering Consultants	\$100 CAD/hr	\$	773.50	\$	77,350.00				
UPEI Technical Consultants	\$175 CAD/hr	\$	5.00	\$	875.00				
UPEI Technologist	\$75 CAD/hr	\$	10.00	\$	750.00				
				\$	78,975.00				

Project Cost as of March 12, 2020							
Adjusted: Total Material Cost	\$	4,636.51	6%				
Labour Cost	\$	78,975.00	94%				
Total Project Cost	\$	83,611.51	100%				

Risks

Trend Definitions						
-	No change					
\leftrightarrow	Change in consequence					
\$	Change in likelihood					
New	New risk added					
Retired	Risk retired					

Impact

Risk No.	Description	Trend
1	Not having all materials at the start of the second semester required for building the mock-up has a high probability to push the schedule back.	Retired
2	Additional time in building the mockup has moderate probability to push the schedule back.	Retired
3	Additional time in necessary testing for calibrating has moderate probability to push the schedule back.	↑
4	Component failures that impacts the mockup ability during building or testing has high probability to push the schedule back.	←
5	Inaccurate effectiveness values during site testing/analysis has moderate risk of delaying entry into service.	←
6	Issues scheduling site visits, meeting and lack of communication has high probability of delaying design.	←
7	Component failures that impacts the mockups ability during building or testing requiring new or fixed components has patential to increase the budget by 3 to 5%.	V
8	Complex ities in analyzing the modkup resulting in inaccurate data has potential to have a moderate impact the calibration.	^←
9	Inaccurate measurements and calculations of onsite heat exchangers has potential to have a moderate impact the results.	^←
10	Unavailable data for specific heat exchangers and parameters has potential to have a large impact calibration methods.	↑

Final Prototype and Plan What and Why?

- In house testing
 - Gain a better understanding of heat exchangers
 - Look for uncontrolled outputs and how they affect the system
 - Determine how parameter fluctuations effect the system
 - Prove effectiveness can be logged in real time
- Analysis of collected data using two calculation methods
 - Determine deviation of the calculated result between the two methods
 - Determine which method is more applicable at Cavendish Farms
- On site testing at Cavendish Farms
 - To prove that the chosen method can be readily applied to the clients systems

- Constructed a mock-up heat exchanger system for data collection
- Data logged several tests with different parameters adjusted
 - Mass Flowrate
 - Hot side fluid
 - Water
 - steam
- Created excel spread sheets to analyze the data using the LMTD method and the Effectiveness method

How?

Effectiveness Method

$$\varepsilon = \frac{\dot{Q}}{\dot{Q}_{\text{max}}} = \frac{\text{Actual heat transfer rate}}{\text{Maximum possible heat transfer rate}}$$

$$\varepsilon = \frac{C_h(T_{h,i} - T_{h,o})}{C_{min}(T_{h,i} - T_{c,i})}$$

LMTD Method

$$LMTD = \frac{(\Delta T)_1 - (\Delta T)_2}{\ln(\frac{\Delta T_1}{\Delta T_2})}$$

$$\dot{Q} = UA_s \Delta T_{\rm lm}$$

Effectiveness Method

Test 1: Trial 2

Parameters			
Measurements	Variables	Control	Value
Cold side mass flow rate	m e	Needle valve	20
Cold side fluid type	-	Domestic Water Supply	Cold Water
Hot side mass flow rate	m h	Needle Valve	20
Hot side fluid type	-	Domestic Water Supply	Warm Water

Specific Heat								
Tube/shell	Fluid	State	Pavg, in	Specific Heat, c				
Tube	Cold Water	Liquid			4186			
Shell	Warm Water	Liquid			4186			

	$C_h(T_{h,i}-T_{h,o})$
_	$\overline{C_{min}(T_{h,i}-T_{c,i})}$

Data:									
No.	T c,in	T c,out	M c	С, с	M h	C, h	C, min	T h,in	T h,out
1	18.80	32.41	0.1419529	594.2148394	0.3816957	1597.7782	594.2148394	61.64	56.35
2	17.92	32.47	0.1419529	594.2148394	0.3816957	1597.7782	594.2148394	60.66	56.66
3	17.79	33.90	0.1419529	594.2148394	0.3816957	1597.7782	594.2148394	61.39	55.56
4	18.04	33.47	0.1419529	594.2148394	0.3816957	1597.7782	594.2148394	61.52	56.66
5	18.74	32.35	0.1419529	594.2148394	0.3816957	1597.7782	594.2148394	60.72	55.43
ϵ	18.11	33.15	0.1419529	594.2148394	0.3816957	1597.7782	594.2148394	61.09	55.25
7	18.36	31.98	0.1419529	594.2148394	0.3816957	1597.7782	594.2148394	60.54	56.66
8	18.30	32.97	0.1419529	594.2148394	0.3816957	1597.7782	594.2148394	60.66	55.37

Calculations:			
Current Rate of Heat Transfer, Q now	Current Max Rate of Heat Transfer, Qmax	Method 1: Effectiveness	Method 2: Q (Leslie)
8448.539834	25456.22908	33.19%	1738.2
6386.3674	25396.35005	25.15%	1744.1
9322.364731	25907.83236	35.98%	1678.4
7759.513963	25830.75675	30.04%	1727.5
8443.778455	24946.94537	33.85%	1690.8
9324.042398	25539.00321	36.51%	1680
6191.93377	25062.06855	24.71%	1747.5
8444.209855	25172.32512	33.55%	1676.6

LMTD Method

					Hot Flow					
Trial	Cold Inlet	Cold Outlet	Hot Inlet	Hot Outlet	Gallons/min	Volumetric flowrate (m^3/s)	Reynolds	Prandtl	Nusselt	h
1	PD1_A02	PD1_A03	PD1_A01	PD1_A04	9.4	5.93E-04	#VALUE!	#VALUE!	#VALUE!	#VALUE!
2	°C	°C	°C	°C	9.4	5.93E-04	#VALUE!	#VALUE!	#VALUE!	#VALUE!
3	11	45	61.6	50	0.5	3.15E-05	667.2	3.0	5.8	30.1
4	11.3	33.3	60.7	55.6	9.4	5.93E-04	12543.4	3.0	69.0	355.4
5	11.3	33.7	61.7	55.7	9.4	5.93E-04	12543.4	3.0	69.0	355.4
6	11.4	34.2	62.3	55	9.4	5.93E-04	12543.4	3.0	69.0	355.4
7	10.8	34	61.1	56.1	9.4	5.93E-04	12543.4	3.0	69.0	355.4
8	11.4	33.2	60.9	56.5	9.4	5.93E-04	12543.4	3.0	69.0	355.4

Cold Flow							Effectiveness						
Gallons/min	Volumetric flowrate (m^3/s)	Reynolds	Prandtl	Nusselt	h	5	LMTD	NTU	C, cold	C, hot	С	E	Q
9.35	5.90E-04	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!
9.35	5.90E-04	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!
9.35	5.90E-04	14321.0	9.5	115.6	5010.6	30.1	19.7	0.053	2473.852	129.737	0.1	0.0261	136.6
9.35	5.90E-04	14321.0	9.5	115.6	5010.6	347.2	34.1	0.033	2473.852	2439.060	1.0	0.0136	2729.2
9.35	5.90E-04	14321.0	9.5	115.6	5010.6	347.2	34.3	0.033	2473.852	2439.060	1.0	0.0136	2744.3
9.35	5.90E-04	14321.0	9.5	115.6	5010.6	347.2	33.6	0.033	2473.852	2439.060	1.0	0.0136	2694.2
9.35	5.90E-04	14321.0	9.5	115.6	5010.6	347.2	34.3	0.033	2473.852	2439.060	1.0	0.0136	2746.6
9.35	5.90E-04	14321.0	9.5	115.6	5010.6	347.2	34.8	0.033	2473.852	2439.060	1.0	0.0136	2785.1

Comparison

Percent Difference					
	29.29%				
	25.64%				
	6.29%				
	26.72%				
	10.81%				
	6.07%				
	12.87%				
	11.20%				
	8.92%				

Final Design Definition

Design Decisions

 Through the first test, many design decisions were made based on the results. These involved:

1) Calculation method:

- LMTD vs. Effectiveness.

2) Sensory data:

- Critical parameters needed to calculate effectiveness.
 - 3) Efficiency vs. Effectiveness.

$$efficiency = \frac{current\ effectiveness}{maximum\ effectiveness}$$

Final Design Definition

Requirements Met

Business objectives		Require	ements		Confirmation Technique				
		User	System	How will we do this			·		
Why the project is needed?	What do users need the system to do?		What does the system need to do?	now will we do tills	Analysis	Inspection	Demonstrate	Test	
Identify areas of concern. Where is energy lost?	1	Real time monitoring		Data logging			Х	X	
Save money		Measure heat exchanger properties and calculate efficiency		Logged data will be fed into the calibrated mathematical model			Х		
Save Energy	3	Compares actual efficiency to rated efficiency to determine effectiveness		Logged data will be fed into the calibrated mathematical model			Х		
	4	Ability to interface with users system		Confirm components with client		Х			
	5	Identify all heat exchangers with locations and type		Identify all heat exchangers types, ratings and fluids through site visits and documents provided by the client. Compile information into one document.		х			
	6		Get data from heat exchangers	Client to install monitoring equipment	Х				
	7		System analysis. Use parameters to calculate efficiency and effectiveness	Create mathematical model to compute data	Х			Х	
	8		Provide accurate data	Calibrate system using data logging to fine tune mathematical model.	Х			Х	
	9		Able to operate within the physical environment	Spec electonics for the locations they will be utilized.	Х	Х			

Next Steps

Roadmap

- Onsite testing at Cavendish Farms (Monday, 16th March)
- Final analysis and comparison of results
- Finalize conclusions and recommendations for the client
- Finalize documentation
- Prepare for final presentation
- Prepare mock-up for the expo

