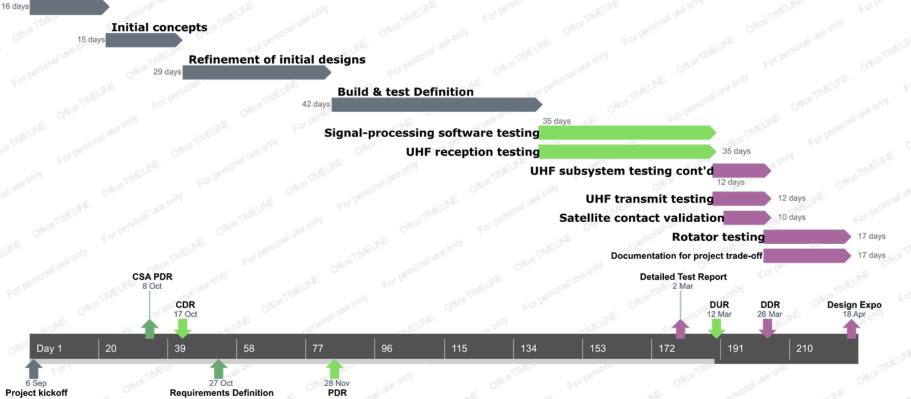


Design Update SpudNik-1 CubeSat: Ground Station

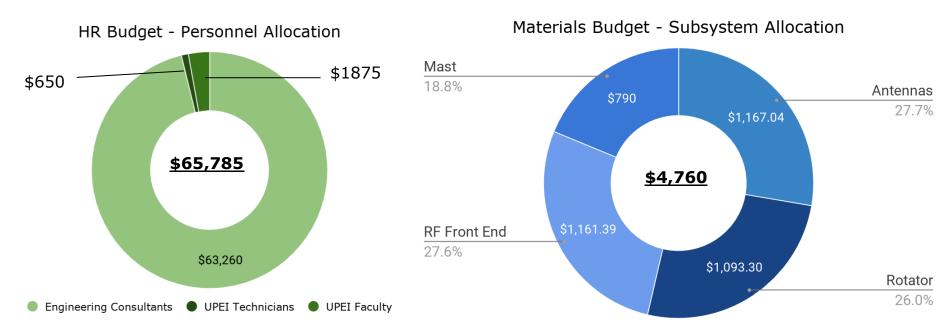
Presented by: Aidan Gallant, Holden Sheen, Russell Peden Date: 13/03/2020 Presented to: ENGN 3720 Project Based Pro-Practice II Instructors: Dr. Bishnu Acharya & Mr. David Taylor

Road to Design Expo


Prototyping and Testing

Conclusion

Project Management Update


Background research & project definition

Budget Breakdown

Total current project budget = \$70,545 CAD

Risk Management

Initial high-level project risks

- 1. Licensing
- 2. Unfamiliarity with satcoms
- 3. Long-lead time items
- 4. Unreliable tracking system
- 5. No link between CubeSat and GS
- 6. Inappropriate radiation emissions
- 7. Insufficient time for full systems test
- 8. Component compatibility

Likelihood	5			8		3	
	4				2,7	4	
	3			1,6		5	
	2						
	1						
		1	2	3	4	5	
	Consequence						

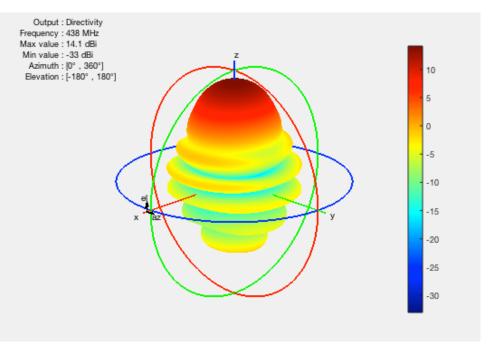
Project Management Update

Risk Management

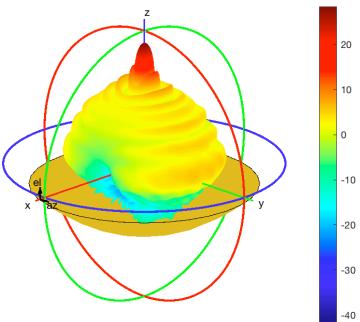
Revised high-level project risks

- 1. Licensing
- 2. Unfamiliarity with satcoms
- 3. Long-lead time items
- 4. Unreliable tracking system
- 5. No link between CubeSat and GS
- 6. Inappropriate radiation emissions
- 7. Insufficient time for full systems test
- 8. Component compatibility

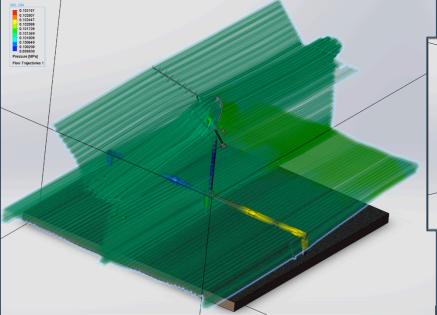
Newly identified risks

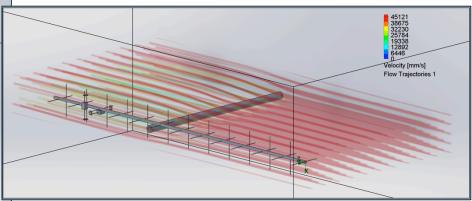

- 1. Shipping delay of international components
- 2. Changes to CubeSat comms system

Likelihood	5						
	4	10					
	3			3, 9			
	2	8		7			
	1	1,2,4,5,6					
		1	2	3	4	5	
	Consequence						

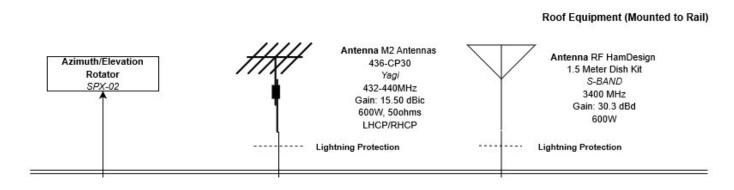


MATLAB model of Yagi radiation pattern

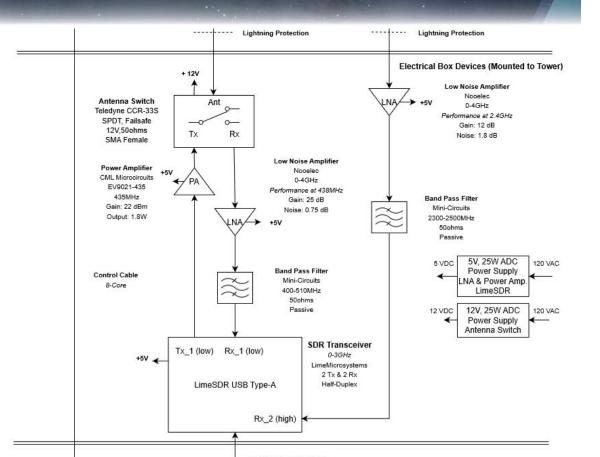


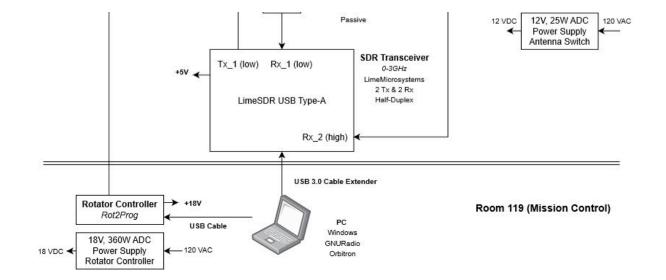


MATLAB model of parabolic reflector radiation pattern



Solidworks wind loading simulations on full ground station (left) and on Yagi antenna (right).


System Layout


System Layout

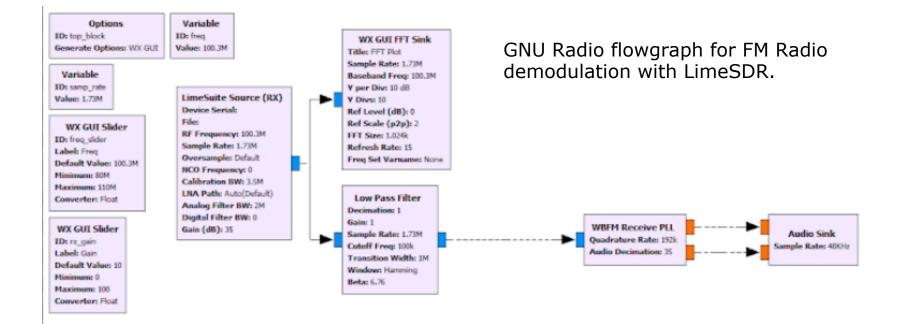
System Layout

Item	Manufacturer	Supplier	Quantity	Cost (CAD)	Part No.	Description
		Antenna	a Assembly			
Yagi Antenna	M2 Antennas	R&L Electronics	1	\$386.38	436CP30	UHF antenna.
1.5m Mesh Dish	RFHamdesign	<u>RFHamdesign</u>	1	390.15	FPB1M5KIT	Parabolic mesh dish for s-band antenna/
Dish Feed Antenna	RFHamdesign	RFHamdesign	1	\$213.11	CIR2320	S-band antenna
Dish Feed Clamp	<u>RFHamdesign</u>	<u>RFHamdesign</u>	1	\$177.40	CLX-06	Secures antenna to parabolic dish.

Rotator Assembly

Rotator w/ Controller	<u>RFHamdesign</u>	<u>RFHamdesign</u>	1
18V/20A Power Supply	Meishile	<u>Amazon.ca</u>	1
Controller Cable	<u>RFHamdesign</u>	<u>RFHamdesign</u>	25m

Item	Manufacturer	Supplier	Quantity	Cost (CAD)	Part No.	Description
		RF F	Front End			
SDR Transceiver	Lime Microsystems	Crowd Supply	1	\$391.69	N/A	Software-defined radio transceiver.
Low Noise Amplifier (Rx)	NooElec	<u>Amazon.ca</u>	2	\$80.00	100812	Amplifies weak received signals
Power Amplifier (Tx)	CML Microcircuits	Digi-Key	1	\$171.84	EV9021- 435	Amplifies transmitted signals.
UHF Bandpass Filter	Mini Circuits	Mini Circuits	1	\$79.95	ZABP- 2400-S+	Filters out-of-band signals.
S-Band Bandpass Filter	Mini Circuits	Mini Circuits	1	\$49.95	ZABP-450- S+	Filters out-of-band signals.


Item	Manufacturer	Supplier	Quantity	Cost (CAD)	Part No.	Description
		RF F	ront End			
Rx/Tx Switch	Teledyne	Mouser	1	\$200		Relay between Tx and Rx lines to protect devices.
5V, 25W Power Supply	<u>MeanWell</u>	Digi-Key	1	\$18.98	RS-25-5	Power supply for amplifiers.
12V, 25W Power Supply	MeanWell	Digi-Key	1	\$18.98	RS-25-12	Power supply for LimeSDR & Rx/Tx Switch
Misc. Short Coax Runs/Adapters	TBD	TBD	TBD	\$100	TBD	Connects RF front end devices within electrical box
USB 3.0 active extension repeater cables	Tripplite	NewEgg	2	\$220	TBD	Connects LimeSDR to mission control PC.

Item	Manufacturer	Supplier	Quantity	Cost (CAD)	Part No.	Description
		Mast	Materials			
Coaxial Cable	TBD	TBD	TBD	\$150	TBD	Connects antennas with RF front end devices
Fiberglass Tube Cross- Boom	McMaster- Carr	McMaster-Carr	1	\$75	8535K76	Locally sources, supports antennas and rotator
Expandable Foam	TBD	TBD	TBD	\$15	TBD	Increases cross boom stiffness.
Metal and fasteners for tower	TBD	TBD	TBD	\$350	TBD	Locally sourced, material for antenna tower
Electrical Box	TBD	TBD	1	\$150	TBD	Locally sourced, enclosure to house RF front end devices.
Lightning Protection	TBD	TBD	TBD	\$50	TBD	Protect components from surge damage.

Prototyping/Testing

Validates systems integration of antena, SDR and software. Can be modified to receive (and in transmit) digital data when modulation method is determined!

Prototyping/Testing

Standing Wave Radio Test

Measuring Yagi SWR using NanoVNA

- SWR = measure of impedance mismatch between antenna and feed line.
- Represents amount of RF energy "reflected" when transmitting
- Measured with Vector Network Analyzer (VNA)

Measured Yagi SWR = 1.49 : 1

Represents 4% of total transmitted RF energy reflected, or antenna efficiency of 96%.

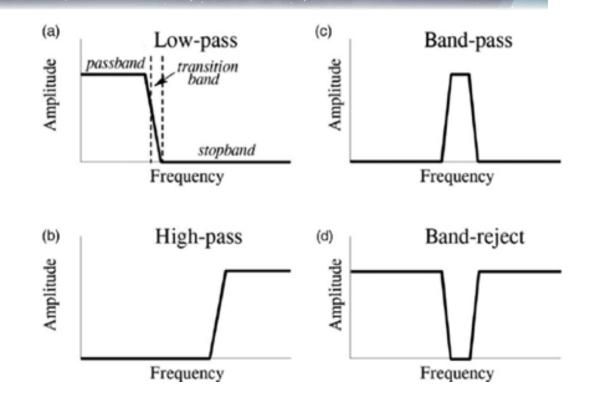
Plan for Final Prototype

- > Full systems integration and validation of UHF subsystem.
 - Antenna
 - Transceiver and front-end components
 - GNU Radio signal-processing codes for transmitting and receiving digital signals on UHF.
- > Testing, validation, and integration of rotator subsystem.
 - Components should arrive in time for Expo, if not for DDR.
 - Short test period.
- Final prototype Demonstrate that system can track and receive signals from passing satellites during Design Expo.
- > "Phase 1" complete
 - Subsystem design decisions finalized
 - Hand-off plan for future students

Thank you!

The SpudNik-1 CubeSat Ground Station team would like to thank project PI Dr. Grant McSorley, technician Mr. Justin Perry, course instructors Mr. David Taylor and Dr. Bishnu Acharya, procurement liaisons Mrs. Janice Murphy and Mr. Wayne Simmons, IT technician Mr. Jeff MacDonald, and members of the PEI Amateur Radio community: Mr. Chris Vessey, Mr. Brent Taylor, Mr. Bill McMaster, and Mr. Bernie Cormier, as well as CSA CCP sat communications specialist Mr. Peter Kazakoff.

Backup Slides



Link Budget

	UHF Uplink	UHF Downlink	S-band Downlink
Figure of Merrit (G/ T)	-21.3 dB/k	-9.1 dB/K	
Modulation Method	GFSK	GFSK	DQPSK
System Margin (Eb/ No)	17.9 dB at 19200 kbps	14.8 dB at 19200 kbps	
System Margin (SNR)	16.1 dB at 19200 bps	12.8 dB at 19200 kbps	

Filter Types

