DESIGN UPDATE

Cleaning Lobster Holding Tanks

Acadian Supreme Inc.
Eric Arsenault

Carly Connell, Darvin Patel, James Ladipo, Pieter Van Leeuwen

> ENGN 3720 Dr. Bishnu Acharya P. Eng David Taylor FEC, P. Eng

> > March 13th, 2020

OVERVIEW

PROJECT STATUS UPDATE

FINAL DESIGN DESCRIPTION

BILL OF MATERIALS & FABRICATION

TESTING PROCEDURE

TESTING RESULTS & ANALYSIS

DESIGN UPDATES

NEXT STEPS

REQUIREMENTS

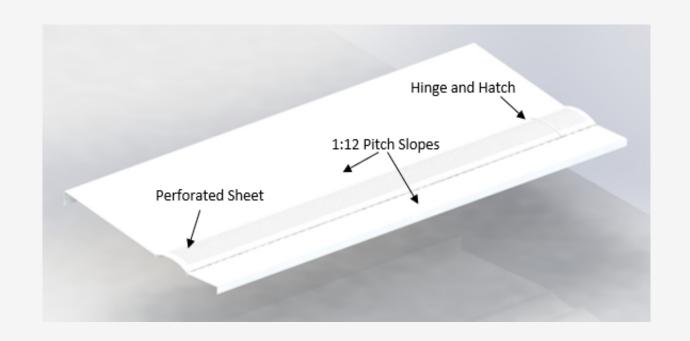
- The design shall remove at least 90% of particulate from the tanks.
- The design shall not increase the facility's current water consumption of 2.5 million gallons a week.
- The system shall be capable of cleaning both the lobster holding tanks and outdoor tanks
- The design shall not take any longer to clean a tank than the current system
- The design should not introduce any particulate into the water that could be harmful to the aquatic life.
- The design must be waterproof as the system will be filtering particulate out of water and will be exposed to submersion and splashing.

PROJECT STATUS

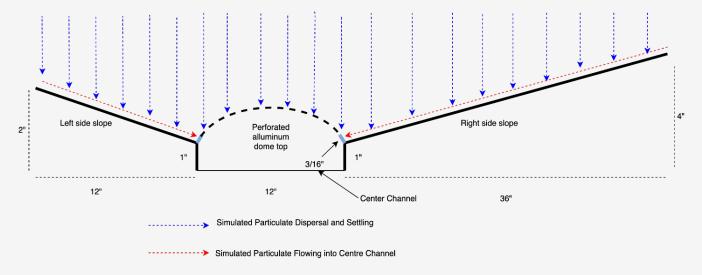
Current Status

- Developed separator prototype
- Performed testing & analysis
- Adding modifications to original separator design
- Continuing to build slope insert

Successes

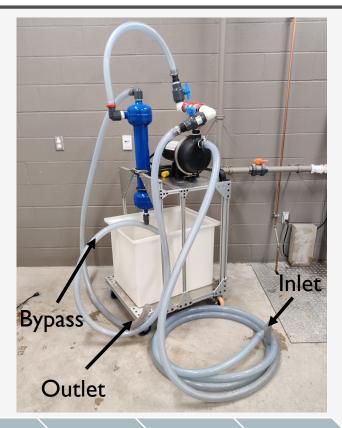

- Functional prototype
- Met requirement meeting 90% efficiency through testing
- Happy client

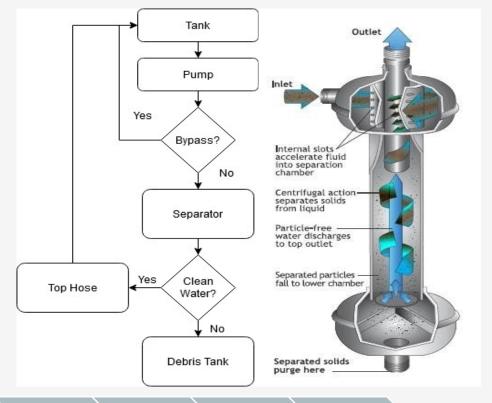
Setbacks


- Minor setbacks for sizing of fittings
- Eliminated slope insert test
- Mitigation techniques prevented any major setbacks

Sloped bottom insert

- Moving Debris into the Center Channel
- 1/12" Pitch Slopes
- Perforated Dome cover
- Hinge and Hatch opening.


- Particulate guided into the center channel.
- Sloped sides made of Lexan
- Perforated Aluminum dome cover.


Portable Cyclone Liquid-Solid Separator

- Aluminum frame mounted on casters
- Cyclone Liquid-Solid Separator (ILB-0125)
- 20 Amp, 67gpm pump
- 30 gallon debris tank
- 3D printed hose ends
- Valve to control water flow

Portable Cyclone Liquid-Solid Separator

- 2 sets of valve to control the flow
- Separates the particulate from the water using centrifugal forces
- Completely modular

BILL OF MATERIALS & FABRICATION

Material	Cost (CAD\$)	
Aluminum & Brackets	\$919.13	
Cyclone Liquid-Solid Separator	\$1,180.65	
Pump	\$517.70	
Hoses and Plumbing Fittings	\$377.22	
Casters	\$29.83	
Debris Tank	\$323.90	
Lexan Sheets	\$625.60	
Other Fastening Materials	\$92.51	
Total Material Costs	\$4,066.54	

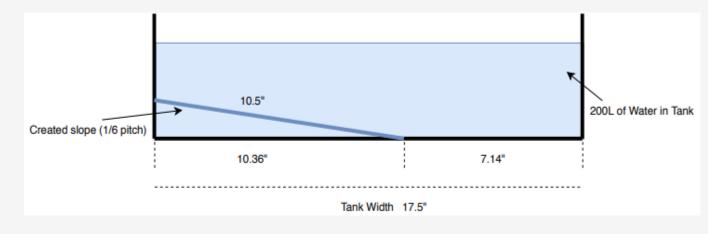
Requirements

Project Status

Final Design BOM & Fabrication

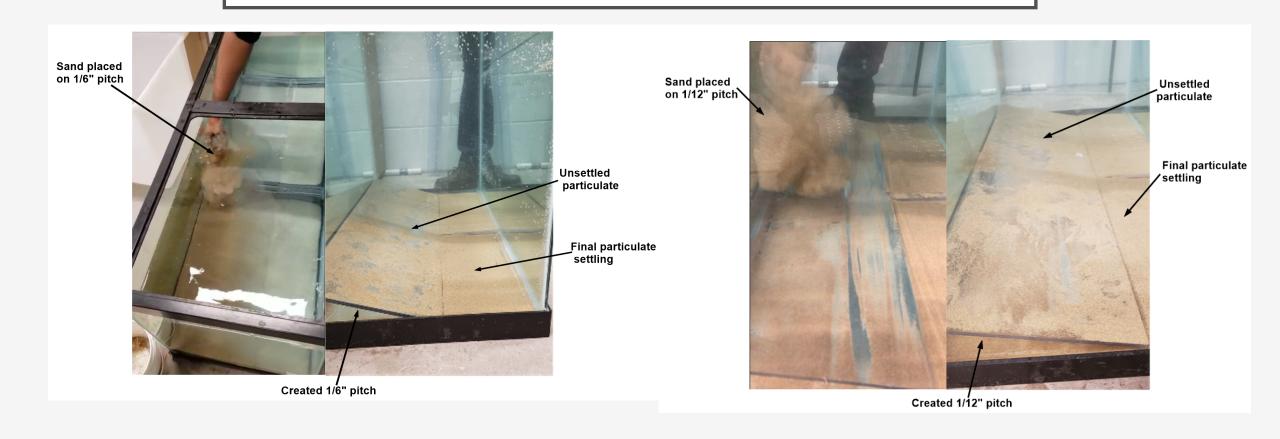
Testing Procedure Results & Analysis

Design Updates


Moving Forward

SLOPE EFFECTIVENESS TESTING PROCEDURE

 Purpose-To determine the effectiveness of the assigned slope at moving debris in to the centre Channel.


Procedure:

- Create the desired sloope in the test tank.
- Spread 500mls of sand over the side slope
- Mimic typical water and lobster movement for 10 minutes
- Empirically assess how much particulate settled in mock channel.

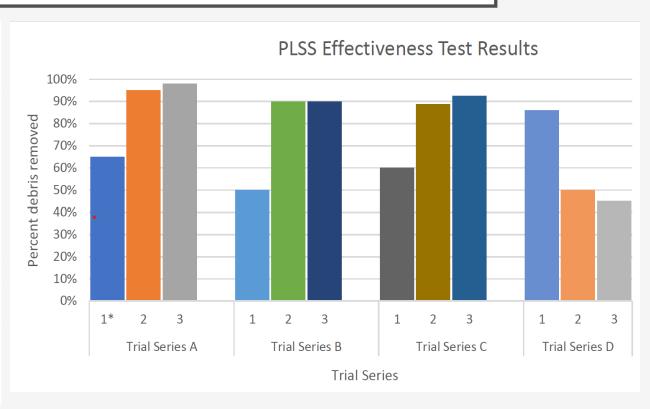
Results &

SLOPE EFFECTIVENESS TEST RESULTS & ANALYSIS

Requirements Project Final BOM & Testing Procedure Results & Design Updates

TESTING PROCEDURE

System Effectiveness and Speed Test


- Purpose: To validate the major requirements and ensure the prototype was functional
- Procedure:
 - Fill tank with 200L and add particulate
 - Run system and move head in S shape for specified time
 - Flush the system using clean water
 - Measure the volume of removed particulate

Results &

TESTING RESULTS & ANALYSIS

Trial Number	Initial Debris Concentration (200L Tank)	Total Time Cleaning (min)	Removed Debris Volume (ml)
AI*	I:400 Sand	l minute	325
A2	1:400 Sand	2 minutes	475
A3	1:200 Sand	3 minutes	490
ВІ	1:200 Sand	I minute	500
B2	1:200 Sand	2 minutes	900
В3	1:200 Sand	3 minutes	900
CI	1:100 Sand	I minute	1200
C2	1:100 Sand	2 minutes	1775
C3	1:100 Sand	3 minutes	1850
DI	1:500 Sand, 1:2000 Mud	2 minutes	430
D2	1:250 Sand, 1:1000 Mud	2 minutes	500
D3	1:125 Sand, 1:500 Mud	2 minutes	900

DESIGN UPDATES

Design

Updates

- Changed the hose head from flat head to 45-degree angle.
- Addition of stiff plastic pipe at the end of the inlet hose.
- Installation of priming valve will remove the need for a sump pump.

MOVING FORWARD

- Adding of Hose hanger to the cart.
- Modification in geometry of hose head.
- Installation of power switch for the pump.
- Addition of drain near the base of the debris tank.
- Switching all the hose joints with the PVC material.

THANK YOU, QUESTIONS?