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SCREENING AND DIAGNOSTIC TESTS

OBJECTIVES

After reading this chapter, you should be able to:

 1. Define accuracy and precision as they relate to test characteristics.

 2. Interpret measures of precision for quantitative test results; calculate and interpret kappa for
categorical test results.

 3. Define  epidemiologic  sensitivity  and  specificity,  and  calculate  their  estimates  and  their
standard errors (or confidence intervals).

 4. Define predictive values and explain the factors that influence them.

 5. Know how to choose appropriate cutpoints for declaring a test result positive (this includes
using receiver operating characteristics curves and likelihood ratios).

 6. Know how to use multiple tests and interpret results in series or parallel.

 7. Understand the impact of using multiple tests that are not conditionally independent.

 8. Describe  multiple  approaches  to  evaluating  (ie estimating  sensitivity  and  specificity)
diagnostic tests.

 9. Understand  latent  class  models  for  estimating  sensitivity  and  specificity  when  no  gold
standard exists.

 10. Understand  how  population  characteristics  might  affect  estimates  of  sensitivity  and
  specificity and be able to use logistic regression to evaluate these effects.

 11. Describe the main features influencing herd-level sensitivity and specificity based on testing
  individual animals.

 12. Describe the main features affecting the use of pooled specimens.
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5.1 INTRODUCTION

Most  of  us  think of  tests  as  specific  laboratory test  procedures  (eg a  liver  enzyme,  serum
creatinine,  or  blood  urea  nitrogen  test).  A  test,  more  generally,  is  any  device  or  process
designed to detect, or quantify, a sign, substance, tissue change, or body response in an animal.
Tests can also be applied at the herd, or other level of aggregation. Thus, for our purposes, in
addition to the above examples of tests, we can consider clinical signs (eg looking for a jugular
pulse), questions posed in the history-taking of a case work-up (eg how long since previous
calving),  questions in a  questionnaire  (eg about management  practices)  or findings at  post-
mortem examination of carcasses as tests. Indeed, tests are used in virtually all problem-solving
activities and therefore, the understanding of the principles of test evaluation and interpretation
are basic to many of our activities. Several discussions of the application and interpretation of
tests are available (Greiner & Gardner, 2000a; Greiner & Gardner, 2000b). 

If  tests  are  being  considered  for  use  in  a  decision-making  context  (clinic  or  field  disease
detection), the selection of an appropriate test should be based on the test result altering your
assessment of the probability that a disease does or does not exist and that guides what you will
do next  (further  tests,  surgery,  treat  with a  specific  antimicrobial,  quarantine  the  herd  etc)
(Connell & Koepsell, 1985). In the research context, understanding the characteristics of tests is
essential to knowing how they affect the quality of data gathered for research purposes. The
evaluation of tests might be the stated goal of a research project or, this assessment might be an
important precursor to a larger research programme.

5.1.1 Screening vs diagnostic tests

A test can be applied at various stages in the disease process. Generally, in clinical medicine,
we assume that the earlier the intervention, the better the recovery or prognosis. Tests can be
used as  screening tests in healthy animals (ie to detect  seroprevalence of diseases,  disease
agents or subclinical disease that might be impairing production). Usually the animals or herds
that test positive will be given a further in-depth diagnostic work-up, but in other cases, such as
in national disease-control programmes, the initial test result is taken as the state of nature. For
screening to be effective,  early detection of disease must offer benefits  to the individual, or
‘programme’, relative to letting the disease run its course and being detected when it becomes
clinical. Diagnostic tests are used to confirm or classify disease, guide treatment or aid in the
prognosis of clinical disease. In this setting, all animals are ‘abnormal’ and the challenge is to
identify  the  specific  disease  the  animal  in  question  has.  Despite  their  different  uses,  the
principles of evaluation and interpretation are the same for both screening and diagnostic tests.

5.2 ATTRIBUTES OF THE TEST PER SE

Throughout most of this chapter, the focus will be on determining how well tests are able to
correctly  determine  whether  individuals  (or  groups  of  individuals)  are  diseased  or  not.
However,  before starting the discussion of  the relationship between test  results and disease
status,  we will  address  some issues  related to  the ability of  a  test  to accurately reflect  the
amount of the substance (eg liver enzyme or serum antibody level) being measured and how
consistent the results of the test are if the test is repeated. 

The  terminology  used  in  the  literature  to  describe  the  evaluation  of  tests  is  not  entirely
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consistent (de Vet et al, 2006; Streiner & Norman, 2006). However, concepts that relate to the
test per se include analytic sensitivity and specificity, accuracy and precision. Our usage of the
term precision is as a general term to reflect the variability among test results.

5.2.1 Analytic sensitivity and specificity

The analytic sensitivity of an assay for detecting a certain chemical  compound refers to the
lowest concentration the test can detect. In a laboratory setting, specificity refers to the capacity
of a test to react to only one chemical compound (eg a commonly used test in the dairy industry
to identify the presence of antibiotic (β-lactam) inhibitors in milk). The analytic sensitivity of
the test is 3 ppb for penicillin, meaning that the test can detect levels of penicillin in milk as low
as 3 ppb. The test reacts primarily to β-lactam antibiotics but will also react with other families
at higher concentrations, such as tetracyclines.  Thus, the test is not specific to just  β-lactam
antibiotics. Diagnostic (epidemiologic) sensitivity and specificity depend (in part) on analytic
sensitivity and specificity, but are distinctly different concepts (Saah & Hoover, 1997) and are
discussed in Section 5.3.

5.2.2 Accuracy and precision

The laboratory accuracy of a test relates to its ability to give a true measure of the substance of
interest (eg blood glucose,  serum antibody level). To be accurate, a test need not always be
close to the true value, but if repeat tests are run, the average of the results should be close to
the true value.

The precision of a test relates to how consistent the results from the test are. If a test always
gives the same value for a sample (regardless of whether or not it is the correct value), it is said
to be precise. Fig. 5.1 shows the various combinations of accuracy and precision.

Results from tests that are inaccurate can only be ‘corrected’ if a measure of the inaccuracy is
available  and  used  to  adjust  the  test  results.  Imprecision  can  be  dealt  with  by  performing
repeated tests and averaging the results.  Correct  calibration of  equipment and adherence to
standard operating procedures are essential to good accuracy and precision; however, the details
are beyond the scope of this book.

5.2.3 Measuring accuracy

Assessing  accuracy  involves  running  the  test  on  samples  with  a  known  quantity  of  the
substance present. These can be field samples for which the quantity of the substance has been
determined  by  a  generally  accepted  reference  procedure.  For  example,  the  accuracy  of  an

Fig. 5.1 Laboratory accuracy and precision
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infrared method for determining milk urea nitrogen (MUN) level  in milk samples has been
evaluated  by  comparing  those  results  with  those  obtained  from a  ‘wet-chemistry’  analysis
(Arunvipas et  al,  2003).  Alternatively,  the accuracy of  a  test  can be determined by testing
samples  to  which  a  known  quantity  of  a  substance  has  been  added.  The  possibility  of
background levels in the original  sample and concern about  the representativeness of  these
‘spiked’ samples make this approach less desirable for evaluating tests designed for routine
field use. A much more detailed description of procedures for evaluating laboratory-based tests
can be found in Jacobson (1998).

5.2.4 Precision and agreement

As indicated above, the term precision is used to denote variability among test results. This
variability may arise in several  ways.  Variability among test  results obtained from repeated
testing  of  the  same  sample  within  the  same  laboratory  is  referred  to  as  repeatability.
Variability among test results obtained from testing the same sample in different laboratories is
called reproducibility (World Organisation for Animal Health (OIE), 2004) and is, in part, a
reflection of how easy it is to set up the test in different settings. A related concept is that of
reliability, which refers to the ability of a test to distinguish between individuals and is not,
strictly speaking, a measure of precision (see Section 5.2.6).

Agreement refers to how well 2 tests agree. It might refer to the level of agreement between 2
different  tests  for  the  same  substance  or  between  responses  of  2 different  raters  who  are
estimating  a  value  (eg 2 individuals  determining  the  heart  rate  of  an  animal).  General
frameworks for evaluating agreement have recently been published (Barnhart et al, 2007; Haber
& Barnhart, 2008).

Evaluating precision, or agreement, involves comparing multiple sets of test results which have
measured the same quantity. Methods for quantifying the variability in test results are discussed
in the following 2 sections. The same procedures that are used for measuring precision can be
used to measure agreement between 2 different tests applied to the same sample.

5.2.5 Measuring precision and agreement for tests with quantitative outcomes

Some  commonly  used  techniques  for  quantifying  variability,  or  for  expressing  results  of
comparisons between pairs of test results are:

• coefficient of variation
• Pearson correlation coefficient
• concordance correlation coefficient
• limits of agreement plots
• ICC

The coefficient of variation (CV) is computed as:

CV=

 Eq 5.1

where σ is the standard deviation among test results on the same sample and μ is the average of
the test results. The CV for a given sample can be computed based on any number of repeat
runs of the same test and then these values can be averaged over samples to compute an overall
estimate of the CV (see Example 5.1). 
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A  Pearson  correlation  coefficient  measures  the  degree  to  which  one  set  of  test  results
(measured  on a continuous scale)  varies  (linearly)  with a second set.  However,  it  does not
directly compare the values obtained (it ignores the scales of the 2 sets of results) and for this
reason, it is much less useful than a concordance correlation coefficient for comparing 2 sets of
test results (see Example 5.1) and we do not recommend its use. 

As with a Pearson correlation coefficient, a concordance correlation coefficient (CCC) (Lin,
1989; Lin, 2000) can be used to compare 2 sets of test results (eg results from 2 laboratories),

Example 5.1 Measuring precision—quantitative test results
data = elisa_repeat

A  set  of  40  individual  cow
milk  samples  was  tested  for
parasite  antibodies  6 times
using  an  indirect  microtitre
ELISA  based  on  a  crude
Ostertagia  ostertagi antigen.
Both raw and adjusted optical
density  (OD)  values  are
recorded  in  the  dataset  (see
Chapter 31 for description of
the  adjustment  method).  The
results were  used to evaluate
the precision (repeatability) of
the test.

The CV for each sample was
computed  based  on  the  6
replicate  values  and  then
averaged  across  the  40
samples. The mean CV values
were 0.155 and 0.126, for the
raw  and  adjusted  values
respectively.  Clearly,
adjustment of the values removed some of the plate-to-plate variability.

Pearson correlation (not recommended)  was  used to  compare  values  from replicates 1 and 2.  The
correlation was 0.937 for the raw values and 0.890 for the adjusted values.

Comparing replicates 1 and 2, the CCC was 0.762 for the raw values and 0.858 for the adjusted values,
suggesting much better agreement between the 2 sets (replicates) of adjusted values (than between the
2 sets of raw values). (Note the lower values of the CCC compared to the Pearson correlation reflect
the inadequacy of the Pearson correlation to detect differences between the 2 sets of results.) Fig. 5.2
shows a CCC plot for the adjusted values. 

Note Data must overlay the solid line for perfect concordance. The reduced major axis is the linear 
regression line through the observations.

There appears to be a greater level of disagreement between the 2 sets of values at high OD readings
compared with low OD readings.

(continued on next page)

Fig. 5.2 Concordance correlation plot
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and it  better reflects  the level  of  agreement  between the  2 sets of results than the Pearson
correlation coefficient does. If 2 sets of continuous-scale test results agreed perfectly, a plot of
one set against the other would produce a straight line at a 45° angle (the equality line). The
CCC is computed from 3 parameters. The first, the location-shift parameter measures how far
the data are (above or below) from the equality line.  The second,  the scale-shift  parameter
measures the difference between the slope for the sample data and the equality line (slope=1).
(The product  of  the location-shift  and scale-shift  parameters  is  referred  to as  the  accuracy
parameter.)  The  third,  the  usual  Pearson  correlation  coefficient,  measures  how  tightly
clustered the sample data are around the line (slope). The CCC is the product of the accuracy
parameter and the Pearson correlation coefficient. A value of 1 for the CCC indicates perfect
agreement. Example 5.1 shows a concordance correlation plot for 2 sets of ELISA results. The
CCC has been generalised to deal with >2 sets of test results and to work with categorical data
(Barnhart et  al,  2002;  King  &  Chinchilli,  2001) and  to  deal  with  the  issue  of  repeated
measurements (King et al, 2007). 

A limits of agreement plot (also called a Bland-Altman plot) (Bland & Altman, 1986) plots the
differences  between  the  pairs  of  test  results  against  their  mean  value.  The  mean  (μd)  and
standard  deviation  of  the  differences  (σd)  are  computed  and  lines  denoting  the  ‘limits  of
agreement’ are added to the plot at μd + 1.96σd. These indicate the range of differences between
the 2 sets of test results. This plot helps to determine if there is a systematic difference between
the 2 sets of observations (ie mean difference < or > 0), and the range of errors (indicated by the
spread  of  the  points  (de  Vet,  2007)).  The  plot  is  also  useful  to  determine  if  the  level  of
disagreement between the 2 sets of results varies with the mean value of the substance being
measured  and  can  be  used  to  identify  the  presence  of  outlying  observations.  A  limits  of

Example 5.1 (continued)
data = elisa_repeat

The limits  of agreement  plot for  the same data is shown in Fig.  5.3.  It  indicates that most  of the
differences between the replicates fell in the range of -0.18 and +0.30 units.

All points would lie along the line y=0 if there was perfect agreement between the 2 sets of results.

Fig. 5.3  Limits of agreement plot
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agreement plot is presented in Fig. 5.3.

Reliability is not strictly speaking a measure of precision because it relates the variability of a
test  result  to  the  amount  of  variation  among  individuals  (McDowell  &  Newell,  1996).
Nevertheless,  it  is  a  term  commonly  encountered  in  the  clinical  epidemiology  literature.
Reliability is most commonly measured using the intraclass correlation coefficient (ICC) which
is described in more detail in Section 20.3.3. In the context of diagnostic test evaluation, the
ICC relates the amount of variability among individuals to the total variability which consists of
variability among individuals plus variability among measurements  within an individual  (de
Vet et al, 2006). 

ICC=
variability among individuals

variability among individuals + measurement error

Alternatively, it can be viewed as 1-the proportion of variance due to measurement error. If a
test is imprecise (much measurement error), the reliability will be low. See de Vet HCW et al
(2006) for a discussion on the use of agreement and reliability measures.

5.2.6 Measuring precision and agreement for tests with a qualitative outcome 

All of the above procedures are useful if the quantity of interest is measured on a continuous
scale.  If  the test  results are  categorical  (dichotomous or multiple categories),  a  kappa (also
called Cohen’s kappa)  (Cohen, 1960) statistic can be used to measure the level of agreement
between  2 (or  more)  sets  of  test  results.  Obviously,  the  assessments  must  be  carried  out
independently of  each other using the same set  of  outcome categories.  The data layout  for
assessing agreement is shown in Table 5.1 for a 2X2 table (larger ‘square’ tables are also used).

Table 5.1 Layout for comparing results from 2 qualitative (dichotomous) tests

Test 2 positive Test 2 negative Total

Test 1 positive n11 n12 n1.

Test 1 negative n21 n22 n2.

Total n.1 n.2 n

5.2.7 Kappa

In assessing how well the 2 tests agree, we are not seeking answers relative to a gold standard
(Section 5.3.1) as this might not exist, but rather whether the results of 2 tests agree with each
other.  Obviously,  there  will  always  be  some  agreement  due  to  chance,  and  this  must  be
considered in the analysis. For example, if one test was positive in 30% of subjects and the
other test was positive in 40%, both would be expected to be positive in 0.4*0.3=0.12 or 12%
of subjects  by chance  alone.  So,  the important  question is:  what  is  the level,  or  extent,  of
agreement beyond what would have been expected by chance? This question is answered by a
statistic called Cohen’s kappa (κ). We can calculate the essential elements of κ as follows:

• observed agreement = (n11 + n22)/n
• expected agreement (chance) = [(n1.* n.1)/n + (n2.* n.2)/n]/n
• actual agreement beyond chance = observed - expected
• potential agreement beyond chance = (1 - expected)
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• κ = actual agreement beyond chance/potential agreement beyond chance.

A formula for calculating κ directly is:

=2
n11 n22−n12 n21

n1. n2.n.2 n.1 Eq 5.2

Procedures for computing the standard error, confidence intervals and tests of significance for κ
are available elsewhere (Reichenheim, 2004). 

Common interpretations of κ, when applied to a test that is subjective in nature (eg identifying
lesions on an X-ray), are shown below (Landis & Koch, 1977). One would expect to apply a
more stringent interpretation when comparing  2 reasonably objective tests (eg  virus isolation
and PCR).

< 0 poor agreement
0.01 to 0.2 slight agreement
0.21 to 0.4 fair agreement
0.41 to 0.6 moderate agreement
0.61 to 0.8 substantial agreement
0.81 to 1.0 almost perfect agreement

Example 5.2 shows the computation of κ for assessing agreement between indirect fluorescent
antibody test (IFAT) results for infectious salmon anemia (ISA) when the test was performed in
2 different laboratories (Nerette et al, 2005b). 

5.2.8 Factors affecting kappa

It has been well established that bias (tendency of one rater to assign more positive test results
than the other rater) and the prevalence of the underlying condition both affect κ (Cook, 2007;
Nam, 2007; Sargeant & Martin, 1998). Alternative approaches to measuring agreement have
been suggested and these include: maximum kappa  (Feinstein & Cicchetti,  1990), Yule’s Y
(Spitznagel & Helzer, 1985), indices of positive and negative agreement (Cicchetti & Feinstein,
1990), and a prevalence and bias adjusted kappa (PABAK—also called the S coefficient) (Byrt
et al, 1993; Thomsen & Baadsgaard, 2006) and conditional relative odds ratio (Suzuki, 2006).
However, in general, these have not been widely adopted so it is important to consider the role
of bias and prevalence on κ.

Bias Before  quantifying  the  level  of  agreement,  we  need  to  determine  if  the  2 tests  are
classifying approximately the same proportion of individuals as positive. (If one test produces
more positive test  results than the other,  there  is  not  much point  in proceeding to evaluate
agreement.) We compare the proportion positive to each test (ie p1 and p2,  where  p1 and  p2

represent the proportion positive to tests 1 and 2, respectively) using the McNemar’s χ2 test for
paired  data  (Lachenbruch,  2007;  McNemar,  1947) or  an  exact  binomial  test  for  correlated
proportions (formula not shown).

McNemar's 
2
=n12−n21

2
/ n12n 21 Eq 5.3

A non-significant test indicates that there is little evidence that the 2 proportions positive differ.
If significant, this test suggests a serious disagreement between the tests and thus the detailed
assessment of agreement could be of little value. 
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Prevalence As noted, the prevalence of the condition being diagnosed affects κ. Two tests (or 2
raters) will have a higher  κ value if the prevalence of the underlying condition is moderate
(~0.5) than if it is very high or very low. The relationship between prevalence and κ is complex,
and depends on the distribution of difficult-to-classify individuals in the population. However,
in general, the influence of prevalence is only substantial at very high and very low prevalence
values. A much more detailed review of this issue, and the conclusion that we should not be
concerned about the effect of prevalence on κ, has recently been published (Vach, 2005).

5.2.9 Multiple raters (tests)

Kappa can be extended to situations in which there are more than  2 raters (or tests). In this
instance, there is no assumption about the uniqueness of the raters, so an individual may be
evaluated by different numbers of raters or by the same number of raters but with different
individuals doing the rating. (However, a balanced study in which the same raters evaluate all
individuals will provide the most meaningful results.) This same approach can be used when
there are only 2 raters, but the identity of those raters differs across subjects. Details of these
methods are covered in Fleiss et al (2003).

When data from multiple raters are available, an alternative to computing  κ is to model the
probability of a positive test result using a multilevel model (see Chapter 22) with the rater as a
random effect (Woodard et al, 2007). This analysis focuses on factors that affect the probability
of a positive test result, but the estimate of the between-rater variance provides some insight
into the level of agreement.

Example 5.2 Agreement among dichotomous test results
data = ISA_test

Kidney samples from 291 salmon were split with one-half being sent to each of 2 laboratories where an
IFAT test was run on the sample. IFAT results were expressed as 0 (negative) or 1+, 2+, 3+, or 4+.
They were subsequently dichotomised so that all scores of 1+ and higher were considered positive. The
data were:

IFAT 2 positive IFAT 2 negative Total

IFAT 1 positive 19 10 29

IFAT 1 negative 6 256 262

Total 25 266 291

McNemar’s χ2 test had the value 1.00 (P=0.317; the binomial P-value was 0.45) indicating that there is
little evidence that the 2 laboratories found different proportions positive. 

observed agreement = 0.945 expected agreement = 0.832
κ = 0.674 SE(κ)a = 0.0762
95% CI of κ = 0.524 to 0.823

Thus,  the level  of agreement  appears substantial.  However,  the CI is wide,  reflecting considerable
uncertainty about the estimate.

a  There are a number of formulae for the SE; the one used here does not assume independence of
observations
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5.2.10 Weighted kappa

For tests measured on an ordinal scale, computation of the usual κ assumes that any pair of test
results which are not in perfect agreement are considered to be in disagreement. However, if a
test result is scored on a 5-point scale, a pair of tests with scores of 5 and 4, respectively should
be considered in ‘less disagreement’ than a pair of scores of 5 and 1. Partial agreement can be
taken into account using a weighted κ in which pairs of test results that are close are considered
to be in  partial  agreement  (through  a  weight  matrix  which  specifies  how much agreement
should  be  assigned  to  them).  A  weighted  κ is  sensitive  to  the  number  of  categories  used
(Brenner  &  Kliebsch,  1996) and  to  the  choice  of  weights  (Graham  &  Jackson,  1993).
Confidence intervals can be computed using bootstrap methods  (Reichenheim, 2004) and an
exact test of statistical significance is available  (Brusco et  al, 2007) (although we are usually
more interested in the magnitude of κ than in its statistical significance).

Example  5.3  shows  the  data  layout  and  the  results  of  an  unweighted  and  weighted  κ for
comparing  2 sets  of  IFAT  results  for  the  ISA  virus  in  salmon.  It  has  been  reported  that
computing an intraclass correlation coefficient may be superior to the use of a weighted kappa
when dealing with ordinal response categories (Maclure & Willett, 1987).

5.3 THE ABILITY OF A TEST TO DETECT DISEASE OR HEALTH

The  2 key  characteristics  we  estimate  are  the  ability  of  a  test  to  detect  diseased  animals
correctly  (its  sensitivity),  and  to  give  the  correct  answer  if  the  animal  in  question  is  not
diseased (its specificity). For pedagogical purposes, we will assume that animals are the units
of interest (the principles apply to other levels of aggregation). Further, we will assume that a
specific  ‘disease’  is  the  outcome  although  other  conditions  such  as  pregnancy,  premature
removal (culling), having a specified antibody titre, or infection status could be substituted in a
particular  instance.  To initiate  this discussion,  it  is  simplest  to assume that  the test  we are
evaluating gives only dichotomous answers—positive or negative. This might be a bacterial
culture in which the organism is either present or absent, or a survey question about whether or
not a dairy farmer uses a milking machine with automatic take-offs. In reality, many test results
provide a continuum of responses and a certain level of response (colour, test result relative to
background  signal,  level  of  enzyme activity,  endpoint  titre  etc)  is  selected  such  that,  at  or
beyond that level, the test result is deemed to be positive.

5.3.1 The gold standard

A gold standard is a test or procedure that is absolutely accurate. It diagnoses all of the specific
disease that exists and misdiagnoses none. For example, if we had a definitive test for feline
leukemia  virus  infection  that  correctly  identified  all  feline  leukemia-virus  infected  cats  as
positive and gave negative results in all non-infected cats, the test would be considered a gold
standard. In reality, there are very few true gold standards. Partly this is related to imperfections
in the test itself, but a good portion of the error is due to biological variability. Animals do not
immediately  become  ‘diseased’,  even  subclinically,  when  exposed  to  an  infectious,  toxic,
physical or metabolic agent. Usually, a period of time will pass before the animal responds in a
manner  that  produces  a  detectable  or  meaningful  change.  The time period  for  an  animal’s
response to cross the threshold and be considered ‘diseased’ varies from animal to animal. 
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Traditionally, in order to assess a new test, we required a gold standard. However, a variety of
approaches for evaluating diagnostic tests are discussed in Section 5.7

5.3.2 Sensitivity and specificity

The concepts of sensitivity and specificity are often easier to understand through the use of a
2X2 table, displaying disease and test results in a sample of animals.

Table 5.2 Data layout for test evaluation

Test positive (T+) Test negative (T-) Total

Disease positive (D+) a (true positive) b (false negative) m1

Disease negative (D-) c (false positive) d (true negative ) m0

Total n1 n0 n

The  sensitivity  of  a  test  (Se)  is  the  proportion  of  diseased  animals  that  test  positive.  It  is
described statistically as the conditional probability of testing positive given that the animal is
diseased [p(T+|D+)], and is measured by:

Example 5.3 Agreement among ordinal test results
data = ISA_test

The data described in Example 5.2 were used except the original ordinal data were retained (5-point
scale).

IFAT 2

IFAT 1 Neg + ++ +++ ++++

Neg 256 5 0 1 0

+ 8 2 0 2 0

++ 2 1 0 4 0

+++ 0 0 2 2 0

++++ 0 0 0 3 3

An  unweighted  kappa  (which  assumes  that  all  test  results  which  were  not  identical  were  in
disagreement) and a weighted kappa in which test results were:

• identical: weighted as complete agreement
• 1 level apart: weighted as 70% agreement
• 2 levels apart: weighted as 30% agreement
• >2 levels apart: weighted as complete disagreement.

95% CI

Kappa SE Lower Upper

Unweighted 0.450 0.037 0.318 0.569

Weighted 0.693 0.046 0.570 0.793

The weighted kappa suggests substantial agreement and is probably a better reflection of the agreement
between the 2 sets of tests than the unweighted kappa.
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Se=
a

ab
=

a
m1 Eq 5.4

The specificity of a test (Sp) is the proportion of non-diseased animals that test negative. It is
described statistically as the conditional probability of testing negative given that the animal
does not have the disease of interest [p(T-|D-)] and is measured by:

Sp=
d

cd
=

d
m0 Eq 5.5

For future purposes,  we will  denote the false positive fraction (FPF) as 1-Sp and the false
negative fraction (FNF) as 1-Se. From a practical perspective, if you want to confirm a disease,
you would use a test with a high Sp because there are few false positives. Conversely, if you
want to rule out a disease, you would use a test with a high  Se because there are few false
negatives.  Confidence intervals for  Se,  Sp,  FPF and  FNF can be obtained using procedures
applicable for estimating the confidence interval of a proportion (see Section 4.10). Estimates of
Se and Sp are specific for a given population and may vary across source populations. Methods
for estimating Se and Sp are covered in Section 5.7 and 5.8 and factors that might affect the Se
and Sp are discussed in Section 5.9.

The estimation of Se and Sp of an indirect ELISA test for detecting bovine fetuses persistently
infected (PI) with the bovine virus diarrhea (BVD) virus is shown in Example 5.4. A blood
sample is taken from the cow in late lactation and tested for antibodies to the virus. If antibodies
are present at a high level, the fetus is deemed to be persistently infected with the BVD virus.

5.3.3 True and apparent prevalence

Two other terms are important descriptors of the tested subgroup. One denotes the actual level
of disease that is present. In screening-test jargon, this is called the  true prevalence (P); in
clinical epidemiology, this is referred to as  prior prevalence, or  pre-test prevalence.  P is a
useful piece of information to include in our discussion of test evaluation because it will affect
the interpretation of the test result. In Example 5.4, P=p(D+)=m1/n=233/1673=0.139 or 13.9%. 

In contrast to the ‘true’ state, unless our test is perfect,  the test results will only provide an
estimate  of  the  true  prevalence  and,  in  screening-test  jargon,  this  is  called  the  apparent
prevalence (AP).  In  Example  5.4,  AP=p(T+)=n1/n=800/1673=0.478  or  47.8%.  In  clinical
epidemiology,  this  might  be  referred  to  as  a  post-test  prevalence.  In  general,  AP can  be
computed as:

AP= p T + =P∗Se1−P1−Sp  Eq. 5.6

5.3.4 Estimating true prevalence from apparent prevalence

If the Se and Sp of a test are known, the true prevalence of disease in a population is estimated
by Rogan & Gladen (1978):

pD + =
AP−1−Sp

1−[1−Sp1−Se ]
=

APSp−1
SeSp−1 Eq 5.7

For example, if  AP=0.150 and  Se=0.363,  Sp=0.876, then our estimate of true prevalence is
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0.109 or 10.9%. It is possible that some combinations of  Se,  Sp and AP result in estimates of
true prevalence outside its allowed range (0-1). This indicates that one or both of the Se and Sp
estimates used are not applicable for the population being studied.

5.4 PREDICTIVE VALUES

The Se and Sp are characteristics of the test. However, these terms do not tell us directly how
useful the test might be when applied to animals of unknown disease status. Once we have
decided to use a test, we want to know the probability that the animal has or does not have the
disease in question, depending on whether it tests positive or negative. These probabilities are
called predictive values and these change with different populations of animals tested with the
same test because they are driven by the true prevalence of disease in the study population as
well as by the test characteristics. In this discussion, we assume the group of subjects being
tested is homogeneous with respect to the true prevalence of disease. If not, then the covariates
that affect disease risk should be identified and separate estimates made for each subpopulation.

Example 5.4 Sensitivity, specificity and predictive values
data = bvd_test

The data used for this example came from a study done to evaluate an ELISA test for the diagnosis of
bovine  fetuses  persistently  infected  (PI)  with  BVD  virus.  See  Chapter  31  for  a  more  complete
description of this dataset. The test was designed to work on both milk and blood samples, but the data
used here relate only to the blood sample results. The mean optical density was 0.92 units. Thus, for
this example a fetus was deemed to be test positive if the optical density of the blood test was greater
than 0.92 units. (This is not an optimal cutpoint for this test, but is used for illustration.)

T+ T-

PI+ (D+) 178 55 233

PI- (D-) 622 818 1440

800 873 1673

For purposes of description, the 178 animals are called true positives, the 622 are false positives, the 55
are false negatives and the 818 are true negatives. We will assume here that  the study subjects were
obtained using a simple random sample.

In this example,
• Se = 178/233 = 76.4% 95% CI = (70.4% , 81.7%)
• Sp = 818/1440 = 56.8% 95% CI = (54.2% , 59.4%)
• FNF = 1-0.764 = 23.6%
• FPF = 1-0.568 = 43.2%
• P = 233/1673 = 13.9%
• AP = 800/1673 = 47.8%
• PV+ = 178/800 = 22.3% 95% CI = (19.4% to 25.3%)
• PV- = 818/873 = 93.7% 95% CI = (91.9% to 95.2%)

Note The confidence intervals are exact based on the binomial distribution but do not take into account 
the clustering of observations within herds.
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5.4.1 Predictive value positive

With data as shown in Table 5.2, the predictive value of a positive test (PV+) is the probability
that  given a positive test,  the animal actually has  the disease;  this might  be represented  as
p(D+|T+) or a/n1 in Table 5.2. The predictive value of a positive test can generally be estimated
using the following formula:

PV +=
p D +∗Se

p D+ ∗Sep D -∗1−Sp Eq 5.8

This formula explicitly shows how the true prevalence of disease in the tested group affects the
PV+.

5.4.2 Predictive value negative

In a similar manner, the PV of a negative test (PV-) is the probability that given a negative test,
the animal does not have the disease (ie p(D-|T-)). In Table 5.2 this is PV- = d/n0. The predictive
value of a negative test result can be estimated using the following formula:

PV - =
p D -∗Sp

p D-∗Spp D+ ∗1−Se  Eq 5.9

Estimates  of  PV+  and  PV-  are  shown  in  Example  5.4.  Note These  values  represent  the
predictive values given the P observed in the study population.

Because we are more often interested in the ‘disease’ side of the question, there is a measure of
the probability that an animal that tests negatively is actually diseased. It is called the positive
predictive value of a negative test or PPV-=b/n0 or 1-(PV-). 

5.4.3 Effect of prevalence on predictive values

As noted above, the predictive values of the test depend on the sensitivity and specificity of the
test  and the prevalence  of  the disease in  the population in  which it  is  used. Consequently,
predictive  values  are  not  good  measures  of  a  test’s  performance  (because  they  vary  from
population to population). Example 5.5 shows how dramatically predictive values can change
as the prevalence of a disease varies from 50% to 1%.

Computing confidence intervals (CI) for PVs is not straightforward. The CI at the observed P
can  be  computed as  a  CI for  a  binomial  proportion (see  Section 4.10) given  the observed
sample size. In situations in which the PV+ or PV- approaches 1 (often the PV- approaches 1
when P is small) exact methods of computing CI for binomial proportions, or other methods of
dealing with the problem that the CI that may extend below 0 or above 1 should be employed
(Mercaldo et al, 2007). In order to estimate PVs for values of P other than that observed in the
data, the uncertainty about the estimates of the Se and Sp as well as the estimate of P need to be
taken  into  account  (see  Zou  (2004)  for  a  discussion  of  the  problem and one  approach  to
computing these CIs).

5.4.4 Increasing the predictive value of a positive test

One way to increase the predictive value of a positive test is to use the test on animals where the
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prevalence in the population being tested is relatively high. Thus, in a screening programme
designed to ascertain if a disease is present, we often might slant our testing toward animals that
are likely to have the disease in question. Hence,  testing culled animals, or animals with a
particular history, is a useful way of increasing the pre-test (prior) probability of disease. 

A second way to increase  PV+ is to use a more specific test (with the same or higher  Se), or
change  the  cutpoint  of  the  current  test  to  increase  the  Sp  (but  this  would  decrease  the  Se
somewhat  also).  As  Sp increases,  PV+  increases  because  the  number  of  false  positives
approaches zero. A third, and very common way to increase PV+ is to use more than one test.
Here  the  result  depends  on  the  method  of  interpretation  as  well  as  the  individual  test
characteristics.

5.5 INTERPRETING TEST RESULTS MEASURED ON A CONTINUOUS SCALE

For many tests, the substance being evaluated (eg urea in milk, serum calcium, liver enzymes)
is  measured  on  a  continuous  scale  or  with  semi-quantitative  (ordinal)  results.  Predictive
probabilities associated with these test results can be used directly to estimate the prevalence of
disease in a population (Choi et al, 2006). However, to interpret the result at an individual level,
we need to select a cutpoint (also called cut-off or threshold) to determine what level of result

Example 5.5 Effect of prevalence on predictive values
data = bvd_test

In order to examine the impact of a change in P on the outcome of a test, we will use the values of Se
and Sp from Example 5.4 and specify 3 scenarios where the true prevalence varies from 50% to 5%,
and then to 1%. For pedagogical purposes, we demonstrate the calculations for the 50% prevalence
scenario in a 2X2 table. A simple way to proceed to obtain these results is to construct a fictitious
population of 1,000 animals with 500 being ‘diseased’ (ie PI+) and 500 being PI- based on the true
prevalence of 50%. Then, we calculate 76.4% (Se) of 500 and fill in the 382 true positives. Finally, we
calculate 56.8% (Sp) of 500, fill in the 284 true negatives, and complete the table. 

Test + Test -

PI+ 382 118 500

PI- 216 284 500

598 402 1000

From these data:

PV+ = 382/598 = 63.9% The probability that a cow testing positive will truly have a PI+ calf is 
63.9%

PV- = 284/402 = 70.6%. The probability that a cow testing negative will truly have a PI- calf is 
70.7%

Comparable values if the prevalence is 5% or 1% are:

Prevalence (%) PV+ (%) PV- (%)

5 8.5 97.9

1 1.8 99.6

As you can see, the PV+ drops off rapidly as P falls, but the PV- rises.
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indicates a positive test result. This is also true when interpreting serologic titres. 

In reality, there is often an overlap in the distribution of the substance being measured between
healthy and diseased animals and we usually select a cutpoint that optimises the Se and Sp of
the test. The dilemma is depicted in Fig. 5.4. As will be demonstrated (Section 5.5.3), it is often
useful to use the actual result when assessing the health status of the tested subject(s).

5.5.1 Selecting a cutpoint

If there is any overlap in the test values for D+ and D- animals, whatever cutpoint we choose
will result in both false positive and false negative test results (eg Fig. 5.4). For the BVD data,
the distributions of optical density (OD) values in the PI+ and PI- calves overlap considerably.
Because of this overlap, if we raise the cutpoint, the Sp will increase (false positives decrease)
and the Se will decrease (more false negatives). Lowering the cutpoint has the opposite effect.
Thus, the choice of cutpoint will depend on the relative seriousness of either a false negative or
a false positive test result.

If  one  has  to  choose  among  multiple  cutpoints,  graphical  procedures  such  as  receiver
operating  characteristic  curves (ROC—described  below)  or  a  sensitivity-specificity  plot
(also  called  a  2-graph  ROC  plot)  might  be  used  to  help  choose  an  optimal  cutpoint.
Alternatively, it is possible to use the actual test result value by computing likelihood ratios (see
Section 5.5.3) and avoid having to select a specific cutpoint. 

A sensitivity-specificity plot (Reichenheim, 2002) shows how the Se and Sp of a test changes as
the cutpoint is moved through the possible range of values (Fig. 5.5). It can be used to identify
where the 2 values are equal, but this is not necessarily the best cutpoint. Depending on the cost
of false positive and false negative test results, it may be important to choose a cutpoint which
results in high Se (and consequently relatively low Sp) or vice versa. As can be seen in Fig 5.5,
obtaining a Se much greater than 70% for the BVD test entails accepting quite a low Sp.

Fig. 5.4 Overlap between healthy and diseased animals
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5.5.2 Receiver operating characteristic curves 

A receiver operating characteristic (ROC) curve is a plot of the  Se of a test versus the false
positive rate (1-Sp) computed at a number of different cutpoints to select the optimum cutpoint
for distinguishing between diseased and non-diseased animals  (Greiner et  al, 2000). The 45°
line in Fig. 5.6 represents a test with discriminating ability that is no better than chance alone.
The closer the ROC curve gets to the top-left corner of the graph, the better the ability of the
test to discriminate between diseased and non-diseased animals. (The top-left corner represents
a test with a Se of 100% and a Sp of 100%).

Use of an ROC curve has the advantage over a ‘one cutpoint value’ for determining Se and Sp
in that it  describes the overall ability of the test to discriminate diseased from non-diseased
animals over a range of cutpoints. The area under the ROC curve (AUC) can be interpreted as
the  probability  that  a  randomly selected  D+ individual  has  a  greater  test  value  (eg optical
density)  than a randomly selected  D- individual (again assuming the distribution of the test
results in the D+ group is higher than that in the D- group). Multiple approaches to estimating
the SE of the AUC are available and have been reviewed  (Faraggi & Reiser, 2002; Hajian-
Tilaki & Hanley, 2002). ROC analysis can also be used to compare 2 (or more) tests based on
the AUC, see Pepe (2003) for details.

Assuming equal costs of false negative and false positive test results, the optimal cutpoint is
that with  Se+Sp at a maximum, and this occurs where the curve gets closest to the top left
corner of the graph (or alternatively, the farthest away from the 45° line). Depending on the
seriousness of false negative versus false positive results, one might want to emphasise test
results in one particular region of the ROC curve such as an area that constrains  Se (or  Sp)
within defined limits. This is referred to as the partial AUC (Walter, 2005b). 

Fig. 5.5 Sensitivity-specificity plot of the BVD test data (with 95% confidence 
intervals (dashed lines))
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Both parametric  and non-parametric ROC curves can be generated.  A non-parametric  curve
simply plots the Se and (1-Sp) using each of the observed values of the test result as a cutpoint.
A parametric ROC curve provides a smoothed estimate by assuming that the latent variables
representing  the  Se and  (1-Sp)  at  various  cutpoints  follow a  specified  distribution  (usually
binormal).  Example  5.6  shows  both  parametric  and  non-parametric  ROC  curves  for  the
bvd_test  data.  Recently,  a  semi-parametric  ROC curve  has  been  proposed  (Wan & Zhang,
2007).

5.5.3 Likelihood ratios

A likelihood ratio (LR) is the ratio of the probability of a given test result among diseased
individuals to the probability of that test result among non-diseased individuals. Consequently,
for a test with a dichotomous test result, there are 2 LRs: one for a positive test results (LR+)
and one for a negative test result (LR-). The  LR+ is the ratio of the post-test odds of disease
divided by the pre-test odds. Recall that, in general, an odds is P/(1-P) so an LR of a positive
test result is the odds of disease given the test result divided by the pre-test odds:

LR+=
PV + /1−PV + 

P /1−P 
=

Se
1−Sp Eq 5.10

where  P=prevalence or p(D+) in the group being tested. Consequently,  LRs reflect  how our
view changes of how likely disease is when we get the test result. 

For tests with continuous outcomes there are 3 possible LRs (Choi, 1998; Gardner & Greiner,
2006): 

• test value specific 

Example 5.6 ROC curves 
data = bvd_test

Fig. 5.6 shows both non-parametric (points) and parametric (dashed line) ROC curves along with 95%
CI curves for the parametric ROC.

Fig. 5.6 Parametric and non-parametric ROC curves
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• cutpoint specific, and 
• category specific.

A test value specific  LR is the ratio of the probabilities of an exact test result in diseased and
non-diseased  individuals.  Because  of  sample  size  limitations  it  is  not  usually  computed.
However, it can be estimated by determining the tangent to the ROC curve at that test value
(Choi, 1998).

5.5.4 Cutpoint specific LR

A cutpoint specific LR (LRcp) at a selected cutpoint is the ratio of the probabilities of test results
above the cutpoint in D+ individuals to that in D- individuals. It can be written as :

LRcp +=
Se cp

1−Spcp Eq 5.11

where cp denotes the cutpoint at or above which the test is considered positive. In this context,
the LR+ can be viewed as the probability of a diseased individual having a test result above the
cutpoint relative to the probability of the same result in a non-diseased subject. The LRcp+ can
be estimated as the slope of the line from the origin to the cutpoint on an ROC curve  (Choi,
1998).

The LR for a negative test result (LR-) at a given cutpoint is the ratio (1-Se)/Sp. It denotes the
probability of the negative result  from a diseased subject  relative to that  of a  non-diseased
subject. Examples of LRs at various cutpoints are shown in Example 5.7. 

The  LR  makes use of the actual  test  result  (as  opposed to just  being positive)  and gives  a
quantitative  estimate  of  the  increased  probability  of  disease  given  the  observed  result.  For
example, at the cutpoint 1.1, the  LR+ is 2.31, meaning that a cow that tests positive at this
cutpoint (ie a test result > 1.1) is 2.3 times more likely to have a PI+ calf than you thought it
was prior to testing. Note Technically, we should state that the odds, rather than the probability,
of the disease has gone up 2.3 times but if  the disease is  rare,  then odds≈probability.  This
approach makes use of the fact that, in general, the LR increases as the strength of the response
(test result) increases. 

5.5.5 Category specific LR

Often researchers in a diagnostic setting prefer to calculate LRs based on the category-specific
result (LR

cat
) as opposed to the cumulative distributions (Giard and Hermans, 1996). 

Here the LR is: 

LRcat=
P result | D+ 

P result | D-  Eq 5.12

The  LRcat can be estimated as the slope of the line joining  2 points of  an ROC curve that
represent the boundaries of the category. 

Regardless of how they are computed,  LRs are useful because they combine information on
both sensitivity and specificity and they allow the determination of post-test from pre-test odds
of disease as shown:
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post-test odds=LR∗pre-test odds Eq 5.13

When interpreting the post-test odds, we need to be aware of whether the LRcp or LRcat is being
used. The former gives the post-test odds for an animal testing positive at that level or higher,
whereas the latter gives the post-test odds for animals testing positive in that specific category
(or level) of test result. The process of computing the category-specific post-test probability is
as follows, assuming that, prior to testing, you thought there was a 2% probability of the cow
having a PI+ fetus and that the test OD was 1.77 (LRcat=3.52 (from Example 5.6)):

• convert the pre-test probability to pre-test odds
pre-test odds=0.02/0.98=0.0204

• multiply the pre-test odds by the likelihood ratio to get the post-test odds
post-test odds=0.0204*3.52=0.0718

• convert the post-test odds to a post-test probability
post-test probability=0.0718/(1+0.0718)=0.067

After obtaining a test result of 1.77, your estimate of the probability that the cow is carrying a
PI+ fetus is 6.7%.

The variance of the lnLR
cp

 is:

var 1n LRcat =1− p result∣D +/ a1− p  result∣D -/b Eq 5.14

where a and b are the number of individuals with the result of interest in the D+ and D- groups,
respectively. A (1-α)% CI is:

LRcat∗exp ±Z var 1n LRcat Eq 5.15

Example 5.7 Likelihood ratios
data = bvd_test

Cutpoint-specific and category-specific likelihood ratios for the bvd_test data
Optical
density
cutpoint

PI+
category

(%)

Cumulative
sensitivity

(%)

LR
cp+

PI-
category

(%)

Cumulative
specificity

(%)

LR
cp-

LR
cat

0 6.76 100.00 16.91 0.00 0.40

0.5 4.63 93.24 1.12 17.44 16.91 0.40 0.27

0.7 13.17 88.61 1.35 21.64 34.34 0.33 0.61

0.9 16.01 75.44 1.71 18.29 55.98 0.44 0.88

1.1 23.13 59.43 2.31 13.29 74.27 0.55 1.74

1.3 18.51 36.30 2.92 6.75 87.56 0.73 2.74

1.5 7.83 17.79 3.13 3.62 94.31 0.87 2.17

1.7 3.56 9.96 4.81 1.01 97.93 0.92 3.52

1.9 6.41 6.41 6.02 1.06 98.94 0.95 6.02

Categories are computed with the cutpoint shown as the left-hand end of the category (eg the category
for cutpoint 1.5 is from 1.5 to 1.699). Results are based on 2,162 test results.
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5.6 USING MULTIPLE TESTS

As stated, the use of multiple tests is an often-used approach to improve the overall diagnostic
ability of the screening (or diagnostic) process.

5.6.1 Parallel and series interpretation

Using  2 tests represents the simplest extension of more than one test although the principles
discussed below hold true for multiple tests. Suppose we have 2 different tests for detecting a
disease. In Example 5.8, we use the results from the IFAT test for infectious salmon anemia
(Se=0.784,  Sp=0.951)  and  the  polymerase  chain  reaction  (PCR)  test  for  the  same  disease
(Se=0.926,  Sp=0.979). If both tests are carried out, the results can be interpreted in one of  2
ways. With series interpretation, only animals that test positive to both tests are considered test
positive. With parallel interpretation, animals that test positive to one test, the other test or both
tests are considered test positive. Series interpretation increases  Sp but decreases  Se; whereas
parallel testing increases Se and decreases Sp.

Tests are considered conditionally independent if the probability of getting a given test result
on one test does not depend on the result from the other test, given the disease status of the
individual. For example, assume that you are dealing with a non-diseased individual. Two tests
will be conditionally independent if the probability of a false positive on test #2 is the same in
individuals that were T- on test 1 and in those that were T+ on test 1. If tests are conditionally
independent,  the  formulae  for  Se and  Sp under  parallel  (Sep,  Spp)  and  series  (Ses,  Sps)
interpretation are:

Se p=Se1Se2−Se1∗Se 2 Eq. 5.16

Spp=Sp1∗Sp2 Eq. 5.17

Ses=Se 1∗Se2 Eq. 5.18

Sps=Sp1Sp2−Sp1∗Sp2 Eq. 5.19

Note If tests are going to be interpreted in series, it often makes sense to first test all animals
with the test that is less expensive and/or more rapid, and then test all test positives with the
second  test.  This  is  referred  to  as  sequential  testing and  it  provides  the  same  results  as
simultaneous testing, but at lower cost, because only those subjects/samples positive to the first
test are followed-up with the second test.

5.6.2 Correlated test results

Given  the  previous  discussion  on  parallel  and  series  interpretation,  one  might  think  that
virtually 100% Se would be obtainable with 2-to-3 tests used in parallel, or 100% Sp with 3-to-
4 tests used in series. However, Example 5.8 uses observed values, not ones we might expect
assuming conditional independence of tests. The expected distributions of results, if the tests
were independent, are shown in Table 5.3.
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Table 5.3 Expected Se and Sp levels with combined tests for ISA assuming conditional 
independence (data from Example 5.8)

Sensitivity Specificity

Interpretation Expected Observed Expected Observed

Parallel 0.784+0.926 - 
0.784*0.926=0.984 0.949

0.951*0.979=0.931 0.930

Series 0.784*0.926=0.726 0.761 0.951+0.979 - 
0.979*0.951=0.999 1.000

The expected  Se for parallel interpretation is slightly higher than observed and slightly lower
than observed for series interpretation. The expected and observed values for  Sp are virtually
identical. Note that conditional independence assumes that, in D+ animals, the probability of a
positive test result to test 2 is the same in samples that test negative to test 1 as it is in those that
test  positive  to  test  1.  A  similar  assumption  exists  in  D-  individuals.  More  likely,  and  as
observed with these data, especially if the tests are biologically related (eg both antibody tests),
if test 1 is negative, the result on test 2 is more likely to be negative than if test 1 was positive.
In this instance, we would describe the test results as  conditionally dependent, or correlated
(Gardner et al, 2000), not conditionally independent. (Note If either the Se or Sp of a test equals
1 (ie is perfect),  then it  will always be conditionally independent (for that characteristic) of
other tests.)

Example 5.8 Multiple tests—series versus parallel interpretation
data = ISA_test

The  data  in  this  example  are  from the  ISA_test  dataset.  The  tests  we  are  using  are  the  indirect
fluorescent antibody test (IFAT) and the polymerase chain reaction (PCR) test, with clinical disease
status (see dataset description Chapter 31) as the gold standard. The observed joint distributions of test
results and virus presence are shown below along with the 4 possible test interpretation criteria. 

Number of fish by test-result category Totals

IFAT result + + 0 0

PCR result + 0 + 0

Diseased fish 134 4 29 9 176

Non-diseased fish 0 28 12 534 574

Series interpretation + 0 0 0

Parallel interpretation + + + 0

Se of IFAT only = 138/176 = 0.784 Sp of IFAT only = 546/574 = 0.951 

Se of PCR only = 163/176 = 0.926 Sp of PCR only = 562/574 = 0.979

Se of series interpretation = 134/176 = 0.761

Se of parallel interpretation = (134+4+29)/176 = 0.949

Sp of series interpretation = (28+12+534)/574 = 1.000

Sp of parallel interpretation = 534/574 = 0.930
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The extent of the dependence can be calculated as shown below and in Example 5.9.

 1. Denote the observed proportion of D+ animals with a positive test result to both tests as p111

(more generally pijk; i denoting test 1 result, j denoting test 2 result, and k denoting disease
status (1=diseased, 0=non-diseased)).

 2. In the D+ group, and using the sample estimates of Se for tests 1 and 2 respectively, (Se1 and
Se2), the covariance is:

covar +=p111−Se1∗Se2 Eq 5.20

 3. Similarly, in the D- group and using the sample estimates of Sp1 and Sp2, the covariance is:

covar - =p000−Sp1∗Sp2 Eq 5.21

The  usual  circumstance  would  be  that  these  covariances  would  be  positive,  indicating
dependence. In a more formal sense, if one calculates an odds ratio (OR) on the data from
the D+ group (OR+) and separately on the D- group (OR-), these ORs describe the above 2
covariances  respectively,  because,  if  the  tests  were  conditionally  independent,  the  ORs
would equal 1. Similarly, if the test results are conditionally independent, the kappa statistic in
data from D+ and D- individuals would both equal 0.

 4. Given dependence, the Se and Sp resulting from parallel interpretation of 2 tests are:

Se p=1−p001=1−1−Se1∗1−Se2−covar (+) Eq 5.22

Spp=p000=Sp1∗Sp2covar (-) Eq 5.23

From series interpretation of 2 tests these are:

Ses=p111=Se1∗Se2covar (+) Eq 5.24

Sps=1−p110=1−1−Sp1∗1−Sp2– covar (-) Eq 5.25

Functionally, this means that the gains/losses from using either of these approaches are not as
great as predicted under conditional independence. It can also affect the choice of tests to be
used. For example, a more optimal outcome might arise from combining 2 independent tests
with lower sensitivities than 2 dependent tests with higher sensitivities.

Example 5.9 Estimating covariance between test results 
data = ISA_test 

Using the Se and Sp estimates obtained in Example 5.8, the covariance in the D+ and D- groups are:

D+ group: covar(+) = p111 - Se1 * Se2 = 0.761 - 0.726 = 0.035

D- group: covar(-) = p000 - Sp1 * Sp2 = 0.930 - 0.931 = -0.001

There is a slight positive covariance in the D+ group, but it is sufficiently small that the correction will
not materially affect the results when the tests are used in combination. There is virtually no covariance
in the D- group.
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5.7 EVALUATION OF DIAGNOSTIC TESTS

There is a variety of approaches to estimating the Se and Sp of a diagnostic test. These include:
• the use of gold standard populations
• the use of a gold standard reference test
• the use of a pseudo-gold standard test (or combination of tests)
• reference test with known Se and Sp
• evaluation when there is no ‘gold standard’ (Section 5.8).

5.7.1 Gold standard populations

In some situations, a population which is assumed to be completely free of a disease may be
available for estimating the  Sp of  a test.  For example,  one of  4 populations sampled in an
evaluation of diagnostic tests for ISA was assumed to be free and provided a direct estimate of
Sp (Nerette et  al, 2005a). The main issue to be considered in this case is whether or not the
characteristics of the population result in an estimate of Sp that is appropriate for the population
of interest. It is not often possible to identify a population in which all animals are assumed to
be D+ for the estimation of Se.

Another approach to estimating Sp when disease is known to be infrequent (say, less than 2%)
is to assume that all of the test positive animals are false positives (ie Sp=1-AP). For example,
in Ireland, about 4 animals per 1,000 test positive to the skin test for bovine tuberculosis; hence,
the Sp of this test cannot be less than 1-0.004=0.996 (99.6%). If a portion of the test positives
are found (or known) to be true positives, then the  AP can be adjusted accordingly and the
estimate of the Sp raised.

5.7.2 Gold standard reference test

In some cases, a gold standard test (or combination of tests) is available. Studies using a gold
standard reference test may be conducted in one of 2 ways. One approach (1-stage approach)
is to test a sample of animals from the population with both the gold standard test(s) and the test
being evaluated. Se and Sp can then be computed directly and the binomial distribution can be
used to calculate the standard errors and confidence limits (see Section 4.10). A drawback of
this approach is that a very large sample size will be required to obtain a reasonable estimate of
Se if the disease prevalence is low.

An alternative 2-stage approach is to screen a sample from the population with the test being
evaluated and then a subsample of T+ and T- animals is submitted to the gold standard test (to
determine  their  ‘true’ health  status).  It  is  vitally  important  that  selection  of  animals  for
verification  be  independent  of  their  true  health  status  (random  sampling  is  the  preferred
method).  If  the fraction of  T+ animals that  is selected for verification is different than that
fraction of T- samples, this must be taken into account when estimating Se and Sp. If we denote
the fraction (sf) of the test positives that are verified as sfT+, and that of the test negatives as sfT-,
then the corrected estimate of Se is:

Se corr=
a / sf T+

a /sf T+b /sf T- Eq 5.26

and the corrected estimate of Sp is:
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Spcorr=
d /sf T-

d /sf T-c/sf T+ Eq 5.27

(See Example 5.10.) If sfT+=sfT-, no adjustment for the sampling fractions is needed.

The variances of these ‘corrected’ proportions are calculated using only the number of verified
individuals in the variance formulae (ie the a+b verified animals for Secorr and the c+d verified
animals for Spcorr (Table 5.2)) (Greiner & Gardner, 2000a).

Procedures for deciding the optimal balance between animals tested with the new test (stage 1)
and  animals  submitted  to  gold  standard  testing  (stage  2)  have  been  published  (McNamee,
2002). A procedure in which stage 2 is replaced with a sequential process of first evaluating the
specificity of the test and then (if the specificity is acceptable) proceeding to evaluating the Se
has been recommended (Wruck et al, 2006).

Regardless of whether a one-stage or  2-stage approach is used, it is advantageous to have a
spectrum of host attributes and clustering units (if any) present (ie animals from a number of
different farms). The results should be assessed for differences in  Se or  Sp by host attributes
using logistic regression (see Section 5.9.2). Blind assessment and complete work-ups of all
animals are useful aids to prevent bias in the estimates. When Se and Sp are estimated based on
samples obtained from several animals within a number of farms, adjustment of the SEs for the
clustering effect should be made. This can be done using hierarchical  multilevel procedures
(Chapter 20 and 22) or survey statistics (Chapter 2) (Greiner, 2003).

Example 5.10 Estimating Se and Sp using a validation subsample
data = none

Suppose that, at slaughter, we examine 10,000 cattle for the presence of lesions consistent with bovine
tuberculosis (TB). We find lesions in 242 cattle. A detailed follow-up is done on 100 of the animal
specimens with lesions and on similar tissue specimens from 200 of the ‘clear’ animals. In the animals
with lesions, 83 are confirmed as bovine tuberculosis, whereas 2 of the 200 clear animals are found to
have tuberculosis. The data are shown here. 

Lesion+ Lesion-

TB+ (D+) 83 2

TB- (D-) 17 198

100 200

and 
sf T +=100 /242=0.413

sf T -=200/9758=0.020

From these we can calculate Secorr and Spcorr

Secorr=
83/0.413

83/0.4132 /0.0205
=

200.9
298.5

=0.673

with approximate SE of √ (0.673*0.328)/85=0.051 and

Sp corr =
198/0.0205

198 /0.020517 /0.413
=

9658.5
9941.2

= 0.996

with approximate SE of √ (0.996*(1-.996))/215=0.004
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5.7.3 Pseudo-gold standard procedures

Pseudo-gold standards involve the use of a combination of imperfect tests as a substitute for a
gold standard.  Two approaches have been described:  discrepant resolution and  composite
reference  standard.  The  former  has  a  problem  in  that  disease  status  measurement  is
conditional upon the test being evaluated and hence, produces biased results (Miller, 1998). It
will not be considered further. 

A composite reference standard (CRS) is formed by first testing all samples with a reference
test and then all reference test negative samples are tested with a resolver test. The results are
interpreted in parallel so that any specimen that was positive on either the reference or resolver
test  is  considered  CRS positive  while  specimens  that  are  negative  on  both  tests  are  CRS
negative (Alonzo & Pepe, 1999). These results are then used to evaluate the test of interest in
place of a gold standard test.

Pseudo-gold standards can also be created using an ad-hoc, study-specific approach provided
there is sufficient  justification for the approach chosen  (Nerette et  al,  2008). Example 5.11
shows the use of a composite reference standard for evaluating the Se and Sp of a test.

5.7.4 Reference test with known Se and Sp

If the Se and Sp of a reference test (Seref and Spref, respectively) are known, then from the data in
a 2X2 table based on the new test results (but with disease status determined by the reference
test), we could estimate the  Senew and  Spnew of the new test using the syntax of Table 5.2 as
follows (Enøe et al, 2000):

Se new=
n1 Spref−c

nSp ref−m0 Eq 5.28

Spnew=
n0 Se ref−b

nSeref−m1 Eq 5.29

We could also estimate P using

P=
nSpref−1m1

n Seref Sp ref−1  Eq 5.30

Variance formulae are available (Gart & Buck, 1966). This procedure assumes that, conditional
on the true disease state, the new test and the reference test are independent, which may not be a
valid assumption. 

5.8 EVALUATION WHEN THERE IS NO GOLD STANDARD

In  situations in which there is  neither a reasonable gold standard,  nor a test(s) with known
characteristics (Se and Sp), latent class models can be used to simultaneously estimate the  Se
and  Sp of  2 or  more  tests  without  any  assumption  about  the  true  disease  status  of  each
individual (Hui & Walter, 1980). There has been a large body of literature published in recent
years on the use of latent class models for evaluating diagnostic tests. This section will provide
only a brief introduction along with some selected references for further reading.
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5.8.1 Latent class models—principles and assumptions

Latent class models (LCM) involve an unknown (latent) variable that takes categorical values.
In this case, the unobserved variable is the true disease status of each animal which is usually
assumed to be binary (diseased  or non-diseased).  Such models can be used to evaluate the
accuracy of diagnostic tests when there is no gold standard. In its standard and most commonly
used form, the model involves 3 assumptions: (i) the target population should consist of 2 (or
more) subpopulations with different prevalences; (ii) the sensitivity (Se) and specificity (Sp) of
the diagnostic tests should be constant across subpopulations (ie the ability of a test to detect
infected individuals should be the same regardless of whether the test is used in a population
with a high prevalence of infection or one with a low prevalence); and (iii) the tests should be
conditionally independent  given the disease status  (Enøe et  al,  2000).  (For  a discussion of
conditional independence, see Section 5.6.2)

If the data consisted of test results from 2 tests applied to individuals from 2 populations, they
can be presented as shown in Table 5.4.

Example 5.11 Use of pseudo-gold standard for evaluating Se and Sp of a diagnostic test
data = isa_lcm

The data used in this example and Examples 5.12 and 5.13 are a subset of those derived from an
evaluation of diagnostic tests for infectious salmon anemia (ISA)(Nerette et al, 2005a). Samples were
collected  from  4 populations  of  fish:  high  prevalence  =  moribund  fish  in  cages  experiencing  an
outbreak, medium prevalence = healthy fish from outbreak cages, low prevalence = healthy fish from
cages near an outbreak (but no ISA evident in the cage) and zero prevalence = a population assumed to
be completely free of disease. Four tests were used on each fish: an indirect fluorescent antibody test
(IFAT), 3 polymerase chain reaction (PCR) tests (in 3 different laboratories) (PCRa, PCRb and PCRc)
and 2 virus isolation (VI) tests (VIa and VIb).

A composite  reference standard (CRS) test  result  was  computed  for  each fish  using PCRb as  the
reference and VI as the resolver test. The data for this calculation are shown below. This was used to
estimate the Se and Sp of the IFAT.

Reference test Resolver test

PCRb VIa CRS

IFAT 1 0 1 0 1 0

1 56 10 6 4 62 (=56+6) 4

0 29 234 13 221 42 (=29+13) 221

244 104 225

The 244 samples that were PCRb- were evaluated using the resolver test (VI); 13 of the 234 PCRb-,
IFAT- samples were positive on VI and were added to the CRS+ group; 6 of the 10 PCRb-, IFAT+
samples were positive and were also added to the CRS+ group.

The Se of IFAT was estimated to be 62/104 = 0.60, while the Sp was 221/225 = 0.98.
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Table 5.4 Layout of data for evaluating Se and Sp using latent class models (2 
populations and 2 tests)

Population 1 Population 2

T2+ T2- Total T2+ T2- Total

T1+ nkij = n111 n112 n11. T1+ n211 n212 n21.

T1- n121 n122 n12. T1- n221 n222 n22.

Total n1.1 n1.2 n1 Total n2.1 n2.2 n2

The  distribution  of  tests  results  are  distributed  according  to  a  multinomial  model  for  the
observed counts in each population:

(nkij) ~ multinomial (nk, pkij)

where nk is the sample size in population k (k=1,2) and pkij is the probability of an animal being
in this cell (i and j represent the 2 tests; i,j = 1,2 ~ +,-).

If θk is the true (unknown) prevalence in population k, then assumptions (ii) and (iii) lead to:

p111=1 Se1 Se21−11−Sp11−Sp2 Eq 5.31

p112=1 Se11−Se21−11−Sp1Sp2

p121=11−Se1Se21−1Sp11−Sp2

p111=11−Se11−Se 21−1Sp1 Sp2

Consequently, the LCM contains 6 parameters: the Se and Sp of each test and the prevalence (θ)
in each population. Given that the population sample sizes are fixed (by the study design), these
2 tables have a total of 6  df (each table contributes 3 df because once the value of  3 cells is
known, the fourth can be computed by subtraction). Consequently, in this particular situation,
estimation involves reparameterising the 6 observed values into 6 parameter estimates and there
are no residual df which can be used to evaluate the model fit and validity. With more than 2
tests and/or  2  populations,  the LCM involves  a  reduction in parameters  relative  to  the full
multinomial model and the residual df can be used to assess the fit of the model.

5.8.2 Estimation procedures

Both maximum likelihood (ML) and Bayesian estimation procedures can be used to fit LCMs
(see Enøe et al (2000); Hui & Zhou (1998) for reviews of the earlier literature). ML estimates
are a set of parameter estimates that were most likely to have generated the observed data and
are obtained by maximising the likelihood function. Software for obtaining ML estimates using
the  ‘TAGS’ program  (Pouillot et  al,  2002), along with software for many other approaches
discussed in this section can be obtained through: http://www.epi.ucdavis.edu/diagnostictests.
Example 5.12 shows the results from the use of a latent class model to estimate the Se and Sp of
3 tests for ISA in salmon. 

ML estimation is usually carried out using an Expectation-Maximisation (EM) algorithm which
is a general estimation procedure for problems involving incomplete data (in this situation it is
the latent  variable  which is  missing).  Following this,  a  Newton-Raphson estimation step is
carried out to produce estimates of the SEs. There are several methods for obtaining confidence
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intervals, but the most commonly used is bootstrapping. ML estimation does not perform well
in  small  sample  situations,  particularly  if  there  are  many  data  cells  with  small  or  zero
frequencies (Walter, 2005a).

Alternatively,  the Bayesian approach can be used to combine  a priori scientific knowledge
about  unknown  parameters  with  the  information  contained  in  the  likelihood  based  on  the
observed  data.  (Bayesian  methods  are  discussed  in  general  in  Chapter  24.)  A  detailed
discussion  about  Bayesian  procedures  for  fitting  LCMs  is  beyond  the  scope  of  this  text.
However, the advantages offered by Bayesian procedures are as follows.

• Bayesian models are very flexible and it is relatively easy to extend the models to
account for factors such as dependence among test results.

• If prior information about any of the parameters (Se, Sp or prevalences) is available, it

Example 5.12 Evaluation of Se and Sp using a latent class model
data = isa_lcm

A subset of the data from the ISA test evaluation (see Example 5.10) were used to evaluate the test
characteristics  of  the  IFAT  (dichotomised),  PCRa  and  VIa  tests.  Data  from  3  populations  (high,
medium and low prevalence populations) were used and maximum likelihood estimates of the Se and
Sp of each test and P of ISA in each population obtained. The data were as follows:

Number of fish (population)

IFAT PCR1 VI High P Medium P Low P

0 0 0 6 49 77

1 0 0 0 1 2

0 1 0 13 21 19

1 1 0 1 0 0

0 0 1 0 0 0

1 0 1 0 0 0

0 1 1 22 9 1

1 1 1 57 20 1

ML estimates (and 95% CI) of the parameters were obtained using the TAGS software.

Prevalence IFAT PCR1 VI

Low Med High Se Sp Se Sp Se Sp

Estimate 0.020 0.292 0.820 0.702 0.984 1.000 0.724 0.979 1.000

Lower CI 0.005 0.211 0.720 0.608 0.950 na 0.653 0.842 na

Upper CI 0.077 0.389 0.890 0.782 0.995 na 0.785 0.998 na

The most surprising result was the low Sp of the PCR but additional evaluations showed that this was
in fact the case. It was not possible for the TAGS software to provide a plausible CI in situations where
the point estimate was 1.000. Because the number of  df available from the data (3*(23-1) = 21) was
greater  than the number of parameters  estimated  (9),  there were  residual  df that  could be used to
evaluate how well this LCM fit the data. The deviance (19.5) on 12 df had a P value of 0.08 providing
some marginal evidence that there were problems with the fit of the model. More detailed evaluation of
this problem is beyond the scope of this text (see Nerette et al (2008)).
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can be incorporated into the analysis. This effectively increases the  df available and
facilitates:

▪ model-building  when  the  observed  data  are  inadequate  to  provide  good
estimates of the required parameters, and

▪ evaluating  the  model  (eg obtaining  goodness-of-fit  estimates  when  they
would not otherwise be possible by providing prior information about some
of the parameters).

Overviews  of  Bayesian  estimation  (Branscum et  al,  2005;  Joseph et  al,  1995) have  been
published and some recent veterinary examples are Engel et al (2008); Georgiadis et al, (2003);
Kostoulas et al (2006).

Although not always possible, it is important to evaluate the assumptions underlying the LCM.
Approaches  for  assessing  the  overall  fit  of  the  model  and  for  dealing  with  each  of  the  3
assumptions are considered here.

5.8.3 Goodness-of-fit

If the number of degrees of freedom in the data exceeds the number in the LCM, it is possible
to obtain an estimate of the goodness-of-fit of the model.

Pearson residuals can be computed for each cell in the data tables by comparing the predicted
value from the LCM (nk  pkij, where pkij is the estimated cell probability) to the observed value
(nk). These may then be normalised by division by the estimated SE of the predicted value to
yield.

kij=nkij−nk pkij/n k p kij Eq 5.32

The squared sum of these residuals is assumed to follow a  χ2 distribution although the exact
reference distribution is unknown. Although this test is assumed to have relatively little power
for detecting lack of fit, numerically large individual residuals identify cells with an apparent
lack of fit.

Alternatively, the deviance can be computed as twice the difference between the log likelihood
of the full multinomial model and the latent class model. The deviance can be compared with a
χ2 distribution (see Chapter 16 for a discussion of likelihood ratio tests). Our experience is that
this test often produces evidence of a statistically significant lack of fit even when the estimates
appear reasonable (see Example 5.12).

5.8.4 Prevalence of the 2 populations differs

The greater the difference in the prevalences among the populations studied, the more precise
the estimates of Se and Sp will be. Consequently, it is desirable to identify populations in which
radically  different  prevalences  are  expected.  In  the  ISA  study of  Examples  5.11–5.13  this
problem  was  approached  by  sampling  fish  from  populations  ranging  from  moribund  fish
collected during a disease outbreak to completely healthy fish from cages with no evidence of
clinical disease. In cases where samples are only available from a single population, it may be
possible to  stratify the population on the basis of some characteristic  which is  expected to
influence disease prevalence.  For example,  Nielsen  et  al (2002) used herd size,  geographic
location (zip code) and herd veterinarian as criteria for dividing a single population of dairy
cattle into groups with assumed differences  in prevalence.  However,  care  must be taken to
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ensure that the prevalences are truly different.

5.8.5 Se and Sp constant across populations

If the Se and/or Sp of a test varies across populations in a study, the overall estimate provided
by the LCM will be some mixture of population specific estimates and will be weighted toward
the population which provides the most information about the parameter. For example, if the Se
of a test varies across populations, the overall estimate of the Se will be weighted toward the
estimate in the high prevalence population because it contains the most D+ animals and hence,
provides the most information about the Se of the test (Toft et al, 2005). 

If a pseudo-gold standard test result can be obtained, then the data can be divided into D+ and
D- datasets and regression procedures (described in Section 5.9.2) can be fit with individual test
results as the outcome. Inclusion of population identifiers in the model will provide evidence as
to whether or not the population affects the estimates of Se and Sp.

Alternatively,  Bayesian  procedures  with  informative  priors  can  be  used  to  fit  LCMs
individually for each population. Informative priors are required because, assuming 2 tests are
being  evaluated,  a  single  population  only  provides  3 df but  5 are  required  for  the  LCM.
Consequently, at least 2 informative priors will have to be included in the model.

5.8.6 Dependence among test results

Tests are more likely to be independent if they have very different biological bases (eg a culture
procedure such as virus isolation and a molecular technique such as PCR). However, this is not
necessarily sufficient to guarantee independence. 

Once again, if 3 or more tests have been applied, pseudo-gold standards can be used to evaluate
dependence among test results by dividing the data into  D+ and  D- individuals based on the
pseudo-gold standard. Log-linear models can be used to compare nested models to determine
the most parsimonious dependence structure with minimal, non-significant loss of fit for the
data (Hanson et al, 2000).

Latent class models can be extended to account for dependence among tests in order to relax the
assumption of conditional independence (eg Branscum et al, 2005; Dendukuri & Joseph, 2001;
Georgiadis et al, 2003). If more complex models, which allow for dependence between tests, fit
the observed data better, then it is assumed that the tests are not independent and the estimates
from the more complex model are preferred. Albert  and Dodd  (2004) showed that in many
practical situations, ML estimators of  Se and  Sp are biased when the dependence structure is
misspecified, and that it is difficult to choose the correct dependence structure using likelihood
comparisons and other model diagnostics. They demonstrated that several models may fit the
data equally well, while providing different  accuracy estimates. They recommended using a
gold standard whenever possible or even collecting gold standard information on a fraction of
subjects to aid in choosing a model.
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5.9 OTHER CONSIDERATIONS IN TEST EVALUATION

5.9.1 Factors that affect Se and Sp

Sensitivity and specificity represent average values of the test characteristics and as such, we
can expect their levels to vary from one subgroup of the population to another. Consequently,
when estimating  Se and  Sp, it is important that the study sample to which the gold standard
diagnostic procedure is applied be representative of the target population (ie those animals to
whom the test will be applied in the future). This representativeness refers to the attributes of
the animals being tested including their age, breed, sex etc, as host and environmental factors
might influence the ability of a test to detect disease. In fact, often it is useful to stratify the
results based on the more important  of these factors  in order to obtain more valid stratum-
specific  estimates.  In  addition,  it  is  important  that  the  study group contains  an  appropriate
spectrum  of  disease  (eg severity,  chronicity  or  stage  of  development).  Certainly,  the  test
characteristics  might  differ  in different  stages  of the disease process;  for example,  tests for
Johne’s disease work much better once the animal is clinically ill as opposed to only being
infected with the organism Mycobacterium avium subsp paratuberculosis (Map). 

While the Se and Sp are often considered characteristics of a test, there is increasing evidence
that for many tests, the Se and Sp vary with the characteristics of the population to which they
are applied  (Greiner  & Gardner,  2000a).  For  example,  the specificity  of serologic  tests  for
Brucella  abortus  is  higher  when  the  test  is  used  in  populations  in  which  no  calfhood
vaccination  is  used  compared  with vaccinated  populations  (Dohoo et  al,  1986).  Often  it  is
important to know what characteristics of a population affect  the  Se and  Sp of a test (some
might prefer to think of factors relating to the occurrence of false negative or false positive
results). 

5.9.2 Evaluating effects of factors on Se and Sp

If there are few factors that affect Se and Sp, you can stratify on these and estimate the Se and
Sp in each stratum. However, when there are several factors to investigate, stratification rapidly
runs  into  problems  of  inadequate  sample  size  and  it  is  more  convenient  to  use  a  logistic
regression approach (Coughlin et al, 1992). For details on logistic regression see Chapter 16.

The logistic regression approach involves modelling the dichotomous test outcome (positive or
negative) as a function of the true disease status variable (Xts) as well as the factors that might
affect the Se and Sp. This can either be done by carrying out separate logistic regressions using
the D+ and D- animals (as shown in the equations below and in Example 5.13) or by including
the true disease status variable (Xts) in the model. In the latter approach, it might be necessary to
include interaction terms between Xts and the other factors to allow for the fact that those factors
might have different effects in D+ and D- animals. Non-significant factors might be eliminated,
but the variable representing the true disease status of the animal must remain in the model. 

For a given set of factor values, the Se of the test will be:

Se=
e +

1e +
Eq 5.33

where μ+=β0+ΣβjXj 
is the linear predictor from a logistic model based only on D+ animals.
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The specificity of the test is:

Sp=1−
e-

1e -
Eq 5.34

where μ-=β0+ΣβjXj is the linear predictor from a logistic model based only on D- animals.

One can use a similar approach to estimate predictive values but in that case, the outcome is the
true disease status and the test result is one of the explanatory variables. Examples of this are
discussed  elsewhere  (Greiner  & Gardner,  2000a).  Example  5.13  shows the  use  of  logistic
regression to evaluate the effect of population on estimates of Se and Sp in the ISA data.

5.9.3 Clustering of test results

In addition to considering how population characteristics may influence estimates of Se and Sp,
it is important to take into consideration the fact that observations used in validation studies
may be clustered  (observations  not  independent).  For example,  data  may come from cows
which are housed in a number of herds. Procedures for dealing with clustered data are described
in more detail in Chapters 20-23. One approach to dealing with the lack of independence would
be to include random effects for clustering variables (eg random herd effects) in the regression
modelling approaches described above.

5.10 SAMPLE SIZE REQUIREMENTS

5.10.1 Gold-standard based procedures

When designing a study to estimate the Se and/or Sp of a test, we need to consider the number
of animals that is required to obtain a specified precision for each estimate. These form the
basis for estimating the 95% (or other specified level) CIs as shown in Example 5.4. For  Se,
estimates within ±5% might suffice, whereas for screening low-risk populations, much larger
sample sizes are needed as Sp estimates need to be within at least ±0.5% of the true value. In a
diagnostic setting, Sp estimates within 3-5% of the true value should suffice. As these estimates
of  Se  and  Sp  are  binomial  proportions,  sample  size  formulae  for  estimating  a  binomial
proportion (see Chapter 2) are applicable. 

5.10.2 Latent class models

In general, sample size requirements for studies using LCM to estimate  Se  and  Sp  are much
larger than for those based on a gold standard approach. A spreadsheet for the calculation of
sample sizes in the situation of  2 conditionally independent tests applied to  2 populations is
available  (Georgiadis et  al,  2005). It  confirms that sample size is heavily influenced by the
magnitude of the difference between the prevalences of disease in the 2 populations.

5.11 HERD-LEVEL TESTING

If a herd, or other aggregate of individuals, is the unit of concern, and a single test of the herd
(eg a culture of a bulk-tank milk sample for Strep. agalactia in a dairy herd) is taken to classify
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the herd as test positive or test negative, the previously described approach to test evaluation
and  interpretation  applies  directly.  The  herd  becomes  the  unit  of  concern  rather  than  the
individual. (Note Throughout this section, the term ‘herd’ will be used but the reader should
recognise that this could be any identifiable group of individuals.)

However, frequently we are asked to certify the health status of a herd based on test results
compiled from a number of individuals. In this instance, in addition to the Se and Sp of the test
at  the  individual  level,  3 factors  interplay  in  determining  the  Se and  Sp at  the  herd  level
(denoted HSe and HSp)—namely, the frequency of disease within infected herds, the number of
animals tested in the herd, and the number of reactor animals per herd that will designate a
positive or negative herd. Once the HSe and HSp of the procedure are known, the evaluation of
the predictive values of positive and negative herd results follows the same pattern as already
described (Christensen & Gardner, 2000; Martin et al, 1992). 

5.11.1 Apparent prevalence

As  mentioned,  herd  sensitivity  (HSe)  and  herd  specificity  (HSp)  are  influenced  by  the
individual level  Se and  Sp,  the within herd  P,  and the threshold number,  or percentage,  of
positive tests that denote the herd, as test positive. For simplicity, we assume only one test is
used; however, multiple tests and repeat testing results can make up the herd test and one need
only establish their combined Se and Sp. Within a herd, the probability of obtaining a positive
test is: 

AP=p T +=P∗Se1−P 1−Sp Eq 5.35

Example 5.13 Evaluation of factors affecting Se and Sp
data = isa_lcm

Separate logistic regression models were fit to the CRS+ and CRS- fish with population as the only
predictor.  The model  for  the CRS+ fish  (which  estimates  sensitivity)  is  shown  below.  (Note The
population free of disease was dropped because it provided no information about the Se of the test).

Logistic regression Number of obs = 104
LR chi2(2) = 3.07

Prob > chi2 = 0.2155
Log likelihood = -68.6 Pseudo R2 = 0.0 219

IFAT Coef SE Z P>|z| 95% CI

prev=med 0.598 1.439 0.420 0.678 -2.222 3.418

prev=high 1.743 1.472 1.180 0.236 -1.143 4.628

Constant -3.689 1.012 -3.640 0.000 -5.673 -1.705

The likelihood ratio test for the overall significance of population as a predictor was 3.07 with 2 df
(P=0.22), indicating that population did not have a significant effect on the  Se  of the test. A similar
model (not shown) of CRS- fish confirmed that the population did not have a significant effect on Sp
either (P=0.64).

The models were extended to account for clustering of test results within cages by the addition of
random effects for cages. Not all fish had their cage identifier recorded which limited the sample size
available for this analysis. There was marginal evidence of clustering of positive test results, but none
for negative test results (results not shown).
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If a herd is infected, then one or more positive test results may arise correctly based on P*Se, or
may arise correctly, but for incorrect reasons, because of the (1-P)(1-Sp) component. 

Thus, if disease is present, the AP is: APpos=P*Se+(1-P)(1-Sp)

However, if the herd is not infected (P=0) then the AP is: APneg=(1-Sp).

5.11.2 Herd sensitivity

If the critical number of animals testing positive to denote the herd as test positive is k, we can
use a suitable probability distribution for AP and solve for the probability of ≥k animals testing
positive  when  n animals  are  tested.  If  n/N is  less  than 0.1,  then a  binomial  distribution is
acceptable  for  sampling  of  n animals  from a  total  of  N animals  in  a  herd;  otherwise,  the
hypergeometric distribution, which provides more accurate estimates, should be used. In the
simplest setting, if k=1, the easiest approach is to compute the binomial probability for k=0 and
take 1 minus this probability to obtain the probability of one or more test positive animals. Thus
for k=1 and assuming the herd is infected:

HSe=1−1−AP pos
n

Eq 5.36

In the more general case, if k or more positives are required before a herd is declared positive,
the HSe can be estimated as:

HSe=1−∑
0

k−1

C k−1
n APpos

k −11−AP pos
n− k−1

Eq 5.37

where Cn
k is the number of combinations of k positives out of n animals tested.

5.11.3 Herd specificity

If the herd is disease free and k=1, then

HSp = Spn

More generally, at a cutpoint of k or more positives, the HSp will be:

HSp=∑
0

k−1

C k−1
n Spn−k −1 1−Spk −1

Eq 5.38

Both  HSe  and  HSp  are  estimates  of  population  parameters  that  apply  to  herds  with  the
underlying conditions and characteristics used to determine the estimates.

5.11.4 Relationships among Se, Sp, HSe and HSp

Some general findings from studying herd test characteristics are:
1. If n is fixed, HSe increases with P and/or AP, provided Se>(1-Sp).
2. As n increases, HSe increases. Gains in HSe from increasing n are especially large if 

AP <0.3.
3. With fixed n, HSe increases as Sp decreases (noted earlier).
4. HSp decreases as Sp decreases or as n increases.



126 SCREENING AND DIAGNOSTIC TESTS

A  program  called  Herdacc  (©D  Jordan,  1995)  is  available  at
www.vetschools.co.uk/EpiVetNet/software.htm  to  perform ‘what-if’  calculations  to  see  how
changing the sample size,  the number required to consider a herd positive or the statistical
distribution (binomial or hypergeometric) affects the results. An example of estimating HSe and
HSp is shown in Example 5.14.

5.11.5 Uncertainty in estimates of Se, Sp and prevalence

It  is  rare  that  the  Se and  Sp of  the test(s)  being used,  or  the underlying  individual  animal
prevalence, are known with certainty. Consequently, there will be uncertainty in the estimate of
HSe and  HSp.  One approach to accounting for  uncertainty in  Se and  Sp is  to compute the
variance of the estimate of the AP using the following formula (Rogan & Gladen, 1978):

var AP =P2
∗

Se∗1−Se

N
1−P

2
∗

Sp∗1−Sp

M Eq 5.39

Example 5.14 Estimating HSe and HSp

We will  assume that  we  are  testing  herds with  an average  of  60 adult  cattle  for  the  presence of
Mycobacterium avium subsp paratuberculosis  (Map) using an ELISA with an estimated  Se of 0.391
and Sp of 0.964. We will assume that if  Map is present, the true prevalence at the time of testing is
12%. Thus the AP in the herds with disease will be:

AP pos=pT + =P∗Se1−P 1−Sp=0.12∗0.3910.88 1−0.964=0.079

and the AP in the disease-free herds will be: AP neg=0.036

Now, assume that the critical number of positive-testing animals to denote a herd as test positive is
Y ≥ 2. For the purposes of this example, we will use the binomial probability distribution to solve for
the probability  of  $2 positive-testing animals  when  n=60 animals  are  tested  (assuming an infinite
population). The probability of Y $2 is found by first computing the probability that Y < 2.

p Y 2=∑
0

Y−1

CY
n APY

1−AP 
n−Y

The probability that Y = 0 is: pY =0=C 0
60
∗0.079

0
∗1−0.079

60
=0.007

The probability that Y = 1 is: pY =1=C1
60
∗0.079

1
∗1−0.079

59
=0.037

The sum of these 2 probabilities is 0.044. Hence, the probability of 2 or more animals testing positive
in a herd with P = 0.12 is 1-0.044 = 0.956, which gives us the HSe estimate.

For HSp, we would assume the herds are disease free so: 

the probability that Y = 0 is: p Y =0=C0
60
∗0.964

60
1−0.964

0
=0.111

the probability that Y = 1 is: p Y =1=C1
60∗0.964591−0.9641=0.248

Hence the HSp is 0.111 + 0.248 = 0.359.

With an  HSe of 96%, we can be confident that we will declare the herd as infected if it is infected.
However, with the HSp of only 36%, we will declare 64% of Map-free herds as infected, so the test
would need to be used with great care.
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where  N and  M are the number of true positive and true negative  animals,  respectively.  A
confidence interval of the estimate of AP can then be computed and the lower and upper limits
used in the formula for HSe (Eq 5.37) to obtain a confidence interval for HSe.

Similarly a confidence interval for  HSp can be built using the lower and upper limits of the
confidence interval for Sp (see Section 4.10).

The approach described above does not take into account that disease is likely to cluster within
herds and given different disease processes within herds, the Se and Sp of the test may also vary
from  herd  to  herd.  A  Monte  Carlo  simulation  program  for  evaluating  herd-level  test
performance taking these factors into consideration has been published  (Jordan & McEwen,
1998) and  recently  used  to  estimate  herd-level  test  characteristics  for  tuberculosis  testing
programs (Norby et al, 2005).

5.12 USE OF POOLED SAMPLES

Often, to reduce cost, or when individual results are not needed or individual samples are not
available, specimens from a number of animals might be pooled and tested as one sample. Such
an approach is most efficient when P is low. Some of the issues that may affect the Se and Sp of
a pooled sample (designated  PlSe and  PlSp respectively)  are: homogeneity of mixing (more
likely to be a problem with fecal samples than serum samples), whether individual samples are
pooled at the laboratory or in the field (eg multiple swabs in a single tube of transport medium),
the effects of dilution of the substance being tested for (perhaps to below the laboratory Se), the
characteristics  of  the  animals  whose  samples  are  going  into  the  pool,  and  the  increased
possibility of having extraneous cross-reacting substances added to the pool because of  the
inclusion of material from more animals. 

The dilution effect  has been demonstrated in several  studies. For example, when pooling of
saline from ear notch samples, the PlSe of an antigen capture ELISA for bovine viral diarrhea
virus was shown to fall from 99% to 72% as the pool size increased from 2 to 5 (Cleveland et
al,  2006).  A similar effect  was demonstrated for pooled swab samples for  Salmonella from
swine carcasses (Sørensen et al, 2007). A large effect of the characteristics (level of shedding)
on  PLSe was observed in a study into the use of pooled samples for  Map  (van Schaik et  al,
2003). Two simulation studies evaluating the effects of various pool and test characteristics on
PlSe and PlSp, along with the economic consequences of using pooled samples, have recently
been published (Jordan, 2005; Muñoz-Zanzi et al, 2006). 

An Internet-based  program for  estimating disease  prevalence  from pooled samples  under  a
variety  of  conditions  (eg known  vs  unknown  Se and  Sp of  test)  is  available
(http://www.ausvet.com.au/pprev/).  Both  frequentist  and  Bayesian  methods  of  estimating
prevalence  from pooled  samples  used  in  the  program have  been  reviewed (Cowling et  al,
1999). This program was recently used in a study of Map in sheep (Toribio & Sergeant, 2007).

5.12.1 Pooled testing and HSe

Christensen and Gardner (2000) showed that HSe based on r pooled samples, each containing
material from m animals, and assuming homogeneous mixing and no dilution effect is:

HSe=1−[1−1−P
m
1−PlSe 1−P 

m PlSp]
r

Eq 5.40
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If  the herd is  D-, then the herd  Sp  based on the pooled sample (HSp) is (PlSp)r,  and if no
clustering occurs within pools, PlSp=Spm. Thus, if pooled testing is performed on a number of
assumed  D- herds,  then  HAP=1-HSp=1-(PlSp)r which allows one to solve for the unknown
PlSp. Similarly, because Sp=PlSp1/m, increasing r or m increases the HSe and decreases HSp in
the same manner as increasing n when testing individuals within a herd. The optimal choice of
r and m should be investigated on a case-by-case basis. An example of estimating HSe and HSp
based on pooled specimens is shown in Example 5.15.
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