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MIXED MODELS FOR DISCRETE DATA

OBJECTIVES

After reading this chapter, you should be able to:

 1. Understand the differences between linear mixed models (continuous data) and generalised
linear  mixed  models  (GLMMs)  (discrete  and  continuous  data)  and  the  role  of  the  link
function in the latter.

 2. Fit random effects logistic and Poisson models.

 3. Understand the differences between population-averaged and subject-specific modelling.

 4. Use a latent variable approach to compute the intra-cluster correlation coefficient for binary
outcomes.

 5. Use either quasi-likelihood or maximum likelihood methods for fitting GLMMs.

 6. Assess the statistical significance of both fixed and random effects in GLMMs.

 7. Evaluate residuals to assess the adequacy of a GLMM that you have fit.
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22.1 INTRODUCTION

In both theory and practice,  it  has proven more difficult than one might have anticipated to
generalise the mixed-models approach from continuous to discrete data. One effect  of these
difficulties is the existence of a wide variety of generalisations of mixed models to discrete
data, some of them only for a particular type of discrete data (mostly binary) and some of them
within wider frameworks. In this chapter, we review the model class most analogous to linear
mixed models: the generalised linear mixed models (GLMM). In order to fully appreciate this
analogy, the reader is encouraged to review linear mixed models first (Chapter 21). 

Our main focus here will be on  binary data (logistic regression with random effects, Section
22.2) and on count data (Poisson regression with random effects, Section 22.3), but the random
effects extension applies to a flexible class of discrete models which, for example, includes
multinomial regression. As in Chapter 21, our mixed models will reflect a hierarchical structure
but  it  is  also  possible  to  build  models  for  other  data  structures.  However—and  this  goes
generally for mixed models for discrete data—the statistical analysis is more difficult than for
continuous data, and requires more care and choices by the researcher (of which the choice of
software is an important one). The field is still growing and advancing but we attempt to give
the applied researcher a snapshot of its present state.

We will use the Brazilian data on the incidence of diarrhea already introduced in Chapter 2 to
illustrate the modelling in this chapter. We consider both the full 4-level hierarchical data with
individual binary outcomes nested within families, communities, and municipalities, as well as
versions of the data aggregated to the family level with either a binary outcome (whether any
family  member  reported  diarrhea),  a  count  outcome  (the  number  of  family  members  that
reported  diarrhea) or an ordinal outcome (the severity of  diarrhea experienced in the family).
The  family-aggregated  data  do  not  allow accounting  for  predictors  for  individuals  such  as
gender and age. Due to this loss of information, they are not recommended for a definitive
analysis of the data but are used here for illustrative purposes. The data form a subset of a more
detailed, complete dataset  for which a 4-level logistic regression analysis has been reported
(Marcynuk et al, 2012). Table 22.1 lists the variables used in the examples. 

Table 22.1 Selected variables from the dataset brazil_smpl

Variable
Level of

measurement Description

mun 4:municipality municipality identification (1-21)

comm 3:community community identification (1-159)

fam 2:family family identification (1-717)

id 1:individual individual identification (1-3399)

diarr 1:individual diarrhea within the last month (0/1)

di_cnt 1:individual number of cases of diarrhea in the last month

age 1:individual age in years

cistern 2:family presence of a cistern (0/1)

water_tx 2:family treatment of water with sodium chloride (0/1)

m_pop_families 4:municipality number of families in municipality
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22.2 LOGISTIC REGRESSION WITH RANDOM EFFECTS

Let  us  consider  the example  of  disease  observed  for  individuals  in  several  groups  (eg  the
families in the diarrhea data). The logistic regression analogue of Eq 21.2 for the probability pi

of the ith individual being diseased is:

logit  pi=01 X 1ik X kiu groupi Eq 22.1

where  ugroup(i) is  the  random  effect of  the  group  containing  individual  i,  assumed  to  be
ugroup(i)~N(0, g

2),  the  Xis  are  the  predictor  values  for  the  ith individual,  and  the  relationship
between the probability pi and the binary outcome Yi is unchanged: p(Yi=1)=pi. The only change
from the ordinary logistic regression model is the group random-effects term. To keep things
simple at our first acquaintance with the logistic random effects model, we first consider the
diarrhea data aggregated to the family level and with families clustered within communities in
Example 22.1. 

22.2.1 Analogies and differences to a linear mixed model

We have seen  that  a  mixed logistic  regression model adds the random effects  to  the fixed
effects, both on a logistic scale. So bearing the logistic scale in mind, we build the models in a
similar  way  to  linear  mixed  models  and  they  might  include  multiple  random  effects  and
possibly random slopes as well. The statistical analysis also has strong similarities in the way
confidence intervals and tests are computed.

The 2-level model (Eq 22.1) induces correlations between the observations in a similar way as
its linear mixed model analogue: equal correlations between individuals within the same group
and independence between groups. However, we have to be careful here: the correlations within
a group are the same only for  individuals with the same fixed effects.  In  our example,  all
-cistern-  positive families  within a  community are  equally correlated,  and the same for  all
families without a cistern. This difference between individuals with different predictor values
may seem strange and is usually small in practice (unless the predictor has a very strong effect).
It is one of the many consequences of modelling the fixed and random effects on the logit scale.
Nevertheless, the model is perfectly valid as a method to account for correlation (or clustering)
between individuals in the same group.

Strictly  speaking,  the  model  in  Eq  22.1  has  a  2-step  interpretation  which  is  perhaps  best
understood by imagining how data would be simulated by the model. For an individual i in the
jth group,  we  would  first  select  the  group  random  effect  (uj)  according  to  its  N(0,  g

2 )
distribution and compute  pi from the fixed effects and the selected  uj-value. We would then
select  the  outcome  Yi as  positive  with  probability  pi or  negative  with  probability  1-pi.  A
common shorthand for this 2-step interpretation is that Eq 22.1 is ‘conditional on’ the random
effects. In linear mixed models we modelled the outcome directly, so there was no need for a
conditional interpretation.

In  the  next  2 sections,  we  describe  how  the  interpretation  of  fixed  and  random  effects
parameters in the mixed logistic model changes from both the logistic regression model and the
linear mixed model. 
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22.2.2 Interpretation of fixed effects parameters

The interpretation of  fixed effects in a linear mixed model was essentially unaffected by the
added random effects. Again, the modelling on the logit scale complicates the interpretation of
models  such  as  Eq  22.1.  The  conditional  interpretation  of  the  model  means  that  when
exponentiating a regression coefficient (for absence of a cistern in the example) to obtain the
odds ratio (OR) (ie OR=exp(0.703)=2.02), this odds ratio refers to comparing families with and
without cisterns  in a particular community (corresponding to a selected community random
effect,  no  matter  the  actual  uj-value).  Frequently  this  is  called  a  subject-specific (SS)  or
cluster-specific (in our example, a community-specific) estimate, as opposed to a population-
averaged (PA) or marginal estimate, which would refer to the OR for comparing families with
and without cisterns from any communities in the population of communities (ie the 2 families

Example 22.1 Random effects logistic model for 2-level diarrhea data
data = brazil_smpl

The association between the presence of cisterns in the families’ water supply, and the occurrence of
diarrhea with at least one family member (-famdiarr-) was explored in the Brazilian diarrhea data.
Families were sampled within 159 communities which in turn belonged to 21 municipalities, but for a
2-level hierarchy,  we focus on families within communities because the presence of cisterns varied
mostly between communities. A total of 436 (60.8%) out of the 717 families did not report diarrhea.

The unconditional association between -famdiarr- and -cistern- was:

cistern

1 0 Total

famdiarr 1 115 166 281 Odds ratio=0.540
95% CI=(0.394,0.740)

Chi-square=15.9
P-value=0.0001

0 245 191 436

Total 360 357 717

These statistics indicate a moderate but clearly significant association between -famdiarr- and -cistern-:
absence of a cistern is associated with an odds ratio of 1/0.540=1.85. However, we have ignored the
fact that the families came from 159 communities, and the prevalence of families reporting (at least one
case of) diarrhea actually varied from 0% to 100% across communities. Consequently, it appears that
we should be concerned about community effects.  The logistic regression with random effects  (Eq
22.1) gave the estimates:

Coef SE Z P 95% CI

cistern -0.703 0.182 -3.87 0.0001 -1.059 -0.347

constant -0.154 0.138 -1.11 0.267 -0.425 -0.118

In addition, the estimated variance of community random effects (with SE) was:
 g

2
=0.5920.247

We shall later see how to compute the significance of the random effect (it is highly significant). The
regression  coefficient  for  -cistern-  should  be  compared  with  the  log  of  the  simple  odds  ratio
(ln(0.540)=-0.616). Accounting for the community effects apparently increased the association slightly
(we will discover this to be an artifact of the random effects model) but hardly changed the assessment
of  its  significance.  In  other  words,  the  communities  neither  had  a  substantial  clustering  nor  a
confounding effect.
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can be from different communities). Therefore, if we think of the OR as the answer to questions
such as ‘how much has the risk increased?’ (in our example, the risk of family diarrhea for a
family  without  a  cistern  versus  a  family  with  a  cistern),  the  SS estimate  answers  the
community-level answer (how much would the risk change within the community,  eg if the
family did not move but installed a cistern)  and the  PA estimate answers  the question at a
regional (or national) level (ie if families in different communities were compared, or a family
moved between communities).  That these  2 questions have different answers challenges our
intuition, but is an incontestable fact. 

Two alternatives exist to the SS odds ratio. One is to convert from SS to PA parameters (on the
logit scale) using the following formula.

PA≈SS/10.346 g
2

Eq 22.2

Example 22.2 illustrates the procedure (see also Section 22.4 for further discussion of SS and
PA estimates). The second alternative to the SS odds ratio is a reinterpretation of this value as a
median odds ratio (MOR)  across  the population of  clusters (communities in our case).  The
rationale behind this idea, introduced by Larsen et al (2000), is that when comparing 2 families,
with and without  cisterns,  from different  communities,  the  OR is  really  a  random quantity
because its value depends on the community effects for the 2 selected communities. Just as any
other random variable, it has a distribution, and hence it makes sense to look for a central value
in this distribution. The mean in this distribution is the PA odds ratio, and the median in this
distribution (MOR) is equal to the SS odds ratio (computed at 2.02 above). We can now say that
when comparing families with and without cisterns from the population, the odds ratio will,
with probability 0.5, take values above and below 2.02. An associated range within which the
OR will lie with a given probability,  eg 80%, can also be computed; the details are shown in
Example 22.2.

22.2.3 Interpretation of variance parameter(s)

In Eq 22.1, the group random effect variance  g
2 has no direct interpretation in terms of the

probabilities of disease. The equation shows that it refers to the variation between groups of the
disease probabilities on a logit  scale.  We can still  interpret  it  qualitatively:  a value of zero
means no variation between groups (and therefore no clustering) and a large positive value
means  a  high  degree  of  clustering.  However,  the  (correct)  statement  that  the  logits  of
probabilities vary within ±1.96σg across groups with a probability of 95%, is not very intuitive.
The variance  g

2 can, without too much extra work, be interpreted in terms of either variance
components or median odds ratios; we discuss these in turn.

In linear mixed models, the variance parameters could be interpreted as variance components,
but in models of discrete data, we have a problem with this interpretation. If we compare Eq
22.1  with  the  linear  mixed  model  (Eq  21.2),  the  error  term (εi)  is  missing  in  the  logistic
equation. This is because the distribution assumption is on the original scale—in our example
Yi ~ bin(1,  pi),  so that the errors  in the model stem from the binomial  (binary)  distribution
instead  of  a  normal  distribution.  Recall  that  in  this  binary distribution  the  variance  equals
pi(1-pi).  Now the total  variance  in  the  data,  var(Yi),  is  no longer  just  the sum of the  error
variance and the random effects variance, as they refer to different scales. Even worse, the total
variance is not constant because the binomial variance varies with p, so a single decomposition
of the variance does not exist. Some years ago, several papers reviewed the computation of
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variance  components  and  intra-class  correlation  coefficients  (ICCs,  see  Section  20.3.3;
sometimes also denoted as variance partition coefficients (VPCs) in acknowledgement of the
non-constant  variances  and  correlations,  as  explained  above)  in  random  effects  logistic
regression, and a number of different methods were suggested (Browne et al, 2005; Goldstein
et  al,  2002;  Rodriguez  and  Elo,  2003).  We  confine  ourselves  to  explaining  a  simple
approximation method based on latent response variables to represent the logistic model as a
threshold model (latent variables were introduced in Chapter 17); see also Snijders and Bosker
(1999), Section 14.3, and Rabe-Hesketh and Skrondal (2012), Chapter 10.

The simplest approach to getting both the individual and group variances on the same (logistic)
scale is to associate with every individual i a latent continuous measure, Zi, which represents the
‘degree’ of sickness (when the outcome measures disease). The observed binary outcome Yi is
then  obtained  simply  as  whether  the  degree  of  sickness  exceeds  a  certain  threshold  (ie is
sufficiently severe to be detected). In formulae, if we denote the threshold by  t, then  Yi=1 if
Zi>t,  and  Yi=0 when  Zi≤t.  Sometimes  this  may seem a  plausible  theoretical  construct,  and
sometimes less so. Some diseases may be detected or reported in individuals if their clinical or
quantitative signs exceed a certain level, but other events such as conception are truly binary in
nature. Mathematically speaking, any model for Zi is then translated into a model for the binary
outcomes. In particular, Eq 22.1 is obtained exactly when t=0 and 

Z i= 01 X 1 i...k X kiugroupi i Eq 22.3

where the fixed effects and the group effects are exactly as before, and where the error terms ε i

are  assumed to follow a logistic  distribution with mean zero and variance  π 2/3=3.29.  (The
logistic  distribution  is  similar  in  shape  to  the  normal  distribution,  and  for  most  practical
purposes, it is equivalent to assume either of these distributions.) Eq 22.3 is a linear mixed
model for Zi. Therefore, computation of variance components and ICCs for Zi-variables follows
the rules of Chapter 21:

var Z i=var ugroup i var i= g
2


2
/3

= g
2
/  g

2


2
/3 Eq 22.4

We demonstrate the procedure in Example 22.2. To summarise, the latent variable approach
allows interpretation in terms of variance components and ICCs by fixing the error variance at
π2/3. We should keep in mind that the strict interpretation is for the latent variables, and the
values are only approximate for the binary outcomes. In particular, as noted, the variances and
correlations  are  not  constant  for  the  binary  outcomes  but  depend  on  the  predictors;  this
dependence  has  disappeared  for  the latent  variables.  Experience  with different  methods for
computing ICCs indicates that the latent variable ICC tends to be somewhat larger than the true
ICC for the binary outcome (see the above-cited papers).

The  variance  g
2 can  also  be  interpreted  in  terms  of  an  odds-ratio  between  the  risk  in  2

randomly selected clusters, where the individuals and groups compared should have the same
fixed effects. The OR between the larger and smaller of the 2 risks is ≥1, and the median in its
distribution (cluster-median odds-ratio, MORc) can be calculated as 

MOR c=exp0.954∗ g Eq 22.5

(where 0.954 is a constant). The interpretation of the MORc is that when comparing (identical)
subjects from 2 randomly selected clusters (groups), the odds ratio will, with probabilities 0.5,
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take values above and below the MORc. One advantage of the MORc is that the heterogeneity
between clusters is now comparable to the impact of the fixed effects  (Larsen et al,  2000).
Example 22.2 illustrates the procedure for the 2-level diarrhea data.

22.3 POISSON REGRESSION WITH RANDOM EFFECTS

A Poisson random intercept regression model with exposure n and group random effect  u can
be written:

ln i =01 X 1 i... k X kiugroup i

Y i~Poisson ni i Eq 22.6

with the assumption: ugroup(i)~N(0,  g
2 ). Thus, the random effect is added to the fixed effects in

a  similar  way as  for  logistic  regression.  The  differences  described  in  the  previous  section
between  models  with  and  without  random effects  to  a  large  extent  carry  over  to  Poisson
regression. We briefly discuss the interpretation of fixed and random effects parameters from
Eq 22.6, and illustrate by analysing the family counts of diarrhea cases (see Example 22.3).

Example 22.2 Interpretation of fixed and random parameters for 2-level diarrhea data
data = brazil_smpl

Based on the model presented in Example 22.1, we calculate an odds-ratio for the absence of a cistern
as exp(0.703)=2.02. It can be interpreted either as a SS value (valid when comparing families with and
without a cistern from the same community) or as the median odds ratio (MOR) across the population
of communities.  For the  PA odds ratio, we first  convert  the parameter to marginal scale (using Eq
22.2):


PA

=0.703/10.346∗0.592=0.640,

and then compute the odds ratio the usual way as exp(0.640)=1.90. This is the mean odds ratio across
the population of communities and is quite close to the unconditional (marginal) estimate of 0.540 seen
in Ex. 22.1. The difference between the  2 ORs is modest here, due to the moderate (not very large)
between-community variation. An 80% range for the OR of families selected from randomly selected
communities is computed as:

80% range: exp 0.703±1.282 2∗ g
2
=exp0.703±1.395=0.50, 8.15 ,

where 1.282 is the Zα for α=0.2 from Chapter 2 (the 90% percentile of Z). The range is wide and spans
well  across 1, essentially stating that the impact of the between-community variation is appreciable
compared to that of the predictor (cistern). 

Turning next to the variance parameter, we calculate by the latent variable approach a total variation of
0.592+3.290=3.882, and an ICC (and proportion of variance at the community level) of 

=0.592/3.882=0.15.

Finally, the cluster-median odds-ratio for the random effect is calculated as:
MORc=exp 0.9540.592=2.08.

The  median  odds  ratio  for  2  comparable  families  (same  fixed  effects)  from  2  randomly  chosen
communities is 2.08, which is about the same magnitude as the odds ratio comparing families from the
same community with and without cisterns (2.02). This shows that even a moderate between-group
variation has an appreciable impact on the individual risk.
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22.3.1 Interpretation of fixed effects parameters

The distinction between SS and PA parameters largely vanishes in Poisson regression because
it is only the intercept among the fixed effect parameters that takes different values in its SS and
PA versions ((Diggle et al, 2002), Section 7.4). This perhaps somewhat surprising fact is related
to the log link function and holds true regardless of the form of the random effects,  ie also if
they include multiple hierarchical levels or random slopes.

22.3.2 Interpretation of variance parameters

In a linear mixed model (Chapter 21), the ICC (for observations within the same cluster) could
be computed by decomposing the total unexplained variance into terms for each level of the

Example 22.3 Random effects Poisson model for 2-level diarrhea data
data = brazil_smpl

In Example 22.1, we analysed the presence of family diarrhea cases in a logistic model accounting for
clustering within communities. A more informative family-level outcome is the number of  diarrhea
cases with the number of family members included as the exposure, or population at risk. We extend
the fixed effects part of the model by including also water treatment (-water_tx-). The 2-level model
from  Eq  22.6  is  fit  to  the  data  for  demonstration  purposes;  we  discuss  several  relevant  model
extensions in a subsequent example (22.5).

log likelihood = -812.08

Coef SE Z P 95% CI

cistern -0.588 0.111 -5.32 <0.0001 -0.805 -0.371

water_tx -0.309 0.111 -2.77 0.006 -0.527 -0.091

constant -1.653 0.124 - - -1.897 -1.409

In addition, the estimated variance of community random effects was
 g

2=0.4590.113 .

Both water treatment and the presence of cisterns
were associated with lower incidence of  diarrhea,
the count ratios being 0.73 and 0.56, respectively.
The community-level variance was 0.459 (on the
logarithmic scale) and thus fairly modest. Fig. 22.1
shows  the  estimated  intraclass  correlation  (ICC)
for  2 families within the same community,  of the
same size, ranging from 2–14, and both with either
the highest or lowest incidence (with or without a
cistern and water treatment, respectively). Despite
the  moderate  between-group  variance  the  ICC
depends quite strongly on the predictors and on the
population at risk (family size) because they both
impact on the mean number of diarrhea cases in a
family, and the ICC is increasing as a function of
the mean. In datasets with strong variations in the
mean (due to predictors or the population at risk),
the  ICC therefore,  does  not  seem  particularly
useful to illustrate the group-level clustering.

Fig. 22.1 Intra-class correlations for 
counts of family diarrhea cases within 
communities, across a range of family 
sizes and two predictor groups

0

.2

.4

.6

.8

IC
C

 (
co

m
m

un
ity

)

0 5 10 15

family size

no cistern or water tx cistern and water tx



MIXED MODELS FOR DISCRETE DATA 623

hierarchy (see Examples 21.1 and 21.3).  For a random effects  logistic regression, a similar
(approximate) calculation was enabled by the latent variable approach. For Poisson regression,
exact formulae exist  (Stryhn et al, 2006), but the resulting variance decomposition and  ICC
depend on the predictor values, so there is no longer a simple and unique ICC across the entire
dataset (except for the ‘null’ model with no predictors). To simplify the notation, denote by βX
a set of predictor values, including the logarithmic offset, of interest:

 X =01 X 1... k X kln n.

Then the variances at level 1 (lowest) and level 2 (highest) as well as the ICC (and proportion
of variance at the highest level) are given by:

level 1: 1 =exp X g
2
/2

level 2: 2=exp 2 X2 g
2
−exp 2 X g

2


ICC : ICC=2 / 21 Eq 22.7

It is recommended to calculate the ICC across a range of βX values of interest. Example 22.3
illustrates the procedure.

22.4 GENERALISED LINEAR MIXED MODEL

The examples of mixed models in the first 2 sections extend to a larger class of models called
generalised linear mixed models. These models are constructed by adding the desired random
effects on the transformed scale specified by the link function in the same way as we did in the
logistic and Poisson regressions. The random effects are, as a practical rule, assumed normally
distributed with mean zero but possibly involving some non-zero correlations (between random
effects at the same level). The model assumptions listed in Section 16.5 are still valid, although
the distributional  form and the equation for  the linear predictor  are now conditional  on the
values  of  the  random  effects  (Section  22.2.1).  Also,  the  general  discussion  of  correlation
structure and interpretation of fixed effects and variance parameters from Section 22.2 carries
over to GLMMs, but some of the specific procedures for binary/binomial data do not,  eg the
latent variable approach for computing variance components and ICCs. To keep things simple,
we will  confine ourselves  throughout  to random intercept  models (ie no random slopes are
included),  but  adding  random  slopes  and  contextual  effects  to  GLMMs  is  possible  (and
relevant) in the same way as in linear mixed models (Sections 21.3 and 21.4).

In  this section we set  out  by discussing in general  terms the  PA and  SS interpretations of
parameters in GLMMs (Section 22.4.1), and then we move on to specific models for binary,
count, and categorical data (Sections 22.4.2–22.4.5).

22.4.1 Population-averaged versus cluster-specific parameters

The distinction between population-averaged (PA) and cluster-specific (subject-specific; SS)
modelling for clustered data was introduced in Sections 22.2.1 and 22.3.1. Here we give more
details and examples (largely following Diggle et al (2002)). First a note on the term ‘subject-
specific’. It originates from repeated measures data consisting of several observations (eg over
time)  on  different  subjects  (Chapter  23);  in  this  case,  measurements  are  ‘clustered’  within
subjects. In the context of our usual hierarchical clustering, we might instead have our subjects
(eg individuals) clustered in groups. To avoid any confusion of this double use of ‘subjects’, we
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shall refer to the upper level of the structure as clusters or groups (instead of subjects) but will
remain with SS as the acronym in keeping with convention. Our next observation is that the PA
and SS interpretations of regression coefficients are equivalent for linear mixed models. This is
not due to their usual normal distribution assumption but to the fact that the linear predictor is
modelled on the original scale; in the terminology of GLMMs, the link function is the identity
function and there is no shift of scale. Therefore, the proper reference for our discussion is a
GLMM with non-identity link, and we also assume a 2-level structure.

The difference between the PA and SS approaches is in the way the clustering or grouping of
the data is dealt with. As previously seen, SS models include a random effect for each cluster in
the linear predictor of the model. The assumptions for the random effects (ie their distribution
and correlation) imply a particular form of the distribution of the set of observations within a
cluster, including their correlation structure. Population-averaged or marginal models involve
only the  marginal means,  ie  the expected values for a particular set of predictors  averaged
across the population of clusters, and do not include specific effects for each cluster. To show
the difference between the parameters involved in the  2 types of model in simple formulae,
denote by  Y our observations and by  u the random effects for the clusters (in an SS model).
Then, using the vector-matrix notation introduced in Section 21.2.2, GLM(M)s of SS and PA
types are based on the equations:

cluster-specific: link [E Y | u]=X 
SS
Zu

population-averaged: link [ E Y ]= X PA
Eq 22.8

where, as before (Eq 21.8), X and Z are our shorthand for the fixed and random part predictors
of the model, and E(Y|u) is the mean of Y conditional on the value of u (as discussed in Section
22.2.1). As indicated by the notation in Eq 22.8, the SS and PA regression parameters are not
identical  (unless  the  link  is  the  identity  link  or  there  is  no  clustering).  Generally  the  PA
parameters are closer to the null (‘attenuated’) than their SS counterparts; we already noted this
attenuation to be absent for identity and log links (except the intercept). The difference depends
on the amount of clustering and is often small relative to estimation error. Formulae for specific
models are given in Sections 22.4.2 and 22.4.3.

The selection of the most appropriate model type (SS or PA) depends on the predictor(s) being
examined. Consider, as an example, a clinical trial on the effect of a treatment for a non-life-
threatening condition such as the common cold (in this case the treatment will be a prophylactic
aimed at preventing colds). The trial is carried out in multiple families; family members are
randomised to receive either the treatment or a placebo, and after a certain period of time a
dichotomous indicator of success (absence of a cold) is established for each family member. In
addition to the treatment, the final logistic regression model with family random effects also
may include the individual’s age and the family’s socioeconomic status. The βSS for treatment
in a  SS model estimates the effect of the treatment in a  particular family on probability of
success (compared with the probability for a comparable family member). This makes sense for
a person or family facing a decision on whether to try out the product. On the other hand, the
βPA gives the effect of this product being adopted on a large scale across all families. Thus, the
interpretation  has  shifted  from  the  specific  family  to  effects  across  families.  Regression
parameters for age are interpreted similarly, now with βSS referring to a comparison of family
members  of  different  ages,  but  age  profiles  of  success  in  the  entire  population  (ie across
families, hence a PA interpretation) may be of interest as well. Note that an SS interpretation
would become almost meaningless for family-level predictors that are inherent in the family (eg
the  socioeconomic  status  that  would  seem  difficult  to  change).  This  problem with  an  SS
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interpretation of a predictor that is unchangeable for the cluster is more common in repeated
measures  data  where  clusters  are  individuals,  for  example,  with  predictors  such  as  sex  or
ethnicity. 

A  final  note  on  recommendations  for  the  (not  uncommon)  situation  that  a  dataset/model
contains multiple predictors, some of which have a desired SS interpretation and others with a
desired PA interpretation. If a conversion formula such as Eq 22.2 exists for the model used,
one should convert (or “marginalise”, in the terminology of Hedeker and Gibbons (2006)) the
parameters with the desired PA interpretation. It is generally more difficult to convert from PA
to SS estimates  because most PA estimation procedures  do not have information about the
variances (see Section 23.5).

22.4.2 GLMMs for binary data

Random  effects  logistic  regression  was  introduced  in  Section  22.2.  Here  we  add  some
comments  about  alternative  link functions  and  give  additional  formulae  for  the  conversion
between SS and PA estimates, and for the latent variable ICC. Example 22.4 shows the results
of fitting a multilevel logistic regression with predictors at multiple levels to the full  diarrhea
data; we will use this model to illustrate statistical methods for binary GLMMs.

For a random intercept logistic regression model, the approximation was presented in Eq 22.2
and is repeated here for convenience:

PA≈SS/10.346 g
2

where  g
2 is the group or cluster variance. By this formula, for PA parameters to be more than

10%  lower  than  SS  parameters,  we  need  g
2 ≥0.68.  For  a  model  with  multiple  random

intercepts (eg 3+ levels in the data hierarchy), Eq 22.2 still applies after replacing  g
2 by the

sum  of  all  variance  components.  When  the  model  includes  random  slopes,  the  variance
associated with the random effects is no longer constant  across the data,  so the conversion
depends on the values of random-effects predictors (Z). The general formula for subject i can be
written (see also Hedeker and Gibbons (2006), Section 9.7):

 i
PA

≈
SS

/10.346∗var Zui Eq 22.9

where the variance computation follows similar lines as Eq 21.11 (depending on the details of
the model). 

For binary/binomial data, 2 occasionally encountered alternatives to the logit function are the
so-called  probit  function (inverse  cumulative  probability  for  the  standard  normal)  and  the
complementary log-log function. The choice of link function is largely dictated by the same
considerations as for GLMs (Section 16.11); in practice, the difference in model fit and in the
resulting statistical inference between the links is often minimal (see Example 22.4). For probit
regression, the formula (22.9) becomes exact when the constant 0.346 is replaced by 1. The
latent  variable  calculation  of  ICCs  is  valid  for  probit  regression  as  well,  by replacing  the
constant π2/3 by 1.

22.4.3 GLMMs for count data

Random-effects Poisson regression was introduced in Section 22.2. Compared to mixed models
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Example 22.4 Generalised linear mixed models (random effects logistic and probit 
regression) for 4-level diarrhea data
data = brazil_smpl

For analysis of the full dataset described in Section 22.1, we selected predictors at different levels. Our
models include age (dichotomised as an indicator for young children of at most 5 years, -age5-) at the
individual level, water treatment (-water_tx-) and the presence of a cistern (cistern) at the family level,
and a municipality size recorded as the number of families in thousands of families and centred at 1000
families (-smsize-). We first discuss the estimates from a 4-level logistic regression model.

logL=-1219.23

Coef SE Z P 95% CI

age5 (age<=5) 0.850 0.125 6.79 <0.0001 0.605 1.096

cistern -0.861 0.180 -4.77 <0.0001 -1.215 -0.507

water_tx -0.582 0.202 -2.88 0.004 -0.978 -0.186

mun. size (-smsize-) 0.178 0.114 1.56 0.119 -0.046 0.402

constant -2.057 0.268 - - -2.581 -1.532

In addition, the estimated variances of the municipality, community, and family random effects were:
m

2
=0.5900.281 , c

2
=0.0570.168 and  f

2
=2.1970.371

We see that young children are at  much higher  risk of  diarrhea, that both water  treatment and the
presence of a cistern reduce risk (as in previous examples) and that larger municipalities are possibly
associated with increased risk. The between-family variance is very large, and there is some variation
between municipalities and hardly any between communities. The ICCs between 2 observations from
the same family (ρf) and between 2 observations from different families in the same community (ρc) can
be estimated using the latent variable approach (Sections 21.2.1 and 22.2.2):

 f  individuals in the same family=
0.5900.0572.197

0.5900.0572.1972/3
=0.464

and

c individuals in different families in the same community=
0.5900.057

0.5900.0572.197
2
/3

=0.105

The  ICC for  municipality will  be almost  the same as  ρc.  The corresponding probit  random effects
model  achieved  virtually  the  same  model  fit  (as  measured  by  the  log-likelihood)  and  gave  the
estimates:

logL=-1219.63

Coef SE Z P 95% CI

age5 (age<=5) 0.472 0.070 6.74 <0.0001 0.334 0.609

cistern -0.475 0.099 -4.80 <0.0001 -0.669 -0.281

water_tx -0.325 0.112 -2.91 0.004 -0.544 -0.106

mun. size (-smsize-) 0.100 0.062 1.59 0.111 -0.023 0.222

constant -1.165 0.146 - - -1.452 -0.879

The estimated variances of the municipality, community and family random effects were, respectively:
m

2
=0.1740.082 , c

2
=0.0170.051 and  f

2
=0.6910.115

The probit regression estimates and SEs are, as expected, scaled towards zero by a factor close to 1.8
(eg 0.850/0.472=1.80); in practice, the scaling is often in the range 1.6–1.8 and thus, slightly less than
the ‘theoretical’ scaling factor of π/√3=1.81 (Hedeker and Gibbons, 2006, Section 9.4). The variances
are scaled by the square of this factor, and the latent variable ICCs are about the same (eg ρf  =0.468).



MIXED MODELS FOR DISCRETE DATA 627

for binary data, the choice of mixed models for count data is considerably more diverse and
confused (from an applied point of view). One reason for this is the larger selection of models
for count data, including several versions of negative binomial models and zero-inflated models
(Chapter 18), all of which could be extended with random effects. Another reason is that both
the Poisson model and its extensions can incorporate random effects of different types and with
different distributions. In this section, we briefly indicate some of the models and demonstrate
their fit to the diarrhea data of Example 22.3. 

An alternative version of the random effects Poisson regression model in Eq 22.6 assumes a
log-gamma distribution instead of a normal distribution for the random effects ugroup(i). What this
really means is that  the group random effects are  vgroup(i)=exp(ugroup(i)),  and these are gamma-
distributed variables which act as multiplicative random effects: Yi ~ Poisson(ni λi vgroup(i)). One
technical  advantage of this model is  that  its likelihood function is easier  to compute which
facilitates likelihood-based inference (eg maximum likelihood estimation). 

The negative binomial distribution (in its standard form) is parameterised by the mean λ and an
added dispersion parameter  α (Chapter 18). Clustering of the data (in groups) may manifest
itself as similarity of the means within groups (while the dispersion is constant) or conversely
as similarity of the dispersion within groups (while the means are constant). These 2 scenarios
would  be  modelled  by  incorporating  random  effects  in  the  means  or  in  the  dispersion
parameters, respectively. Perhaps the most intuitive extension of the Poisson regression model
has normally distributed random effects on the log-scale for the means (in a similar fashion as
in Eq 22.6), but it may be numerically difficult to estimate. Access to specific negative binomial
random  effects  models  varies  between  statistical  software  and  may  involve  manual
programming  of  the  model.  Example  22.5  illustrates  3  alternative  Poisson  and  negative
binomial models fit to the family-level diarrhea data.

An additional question arises when it comes to extension of various forms of models for zero-
inflated counts (Chapter 16). As these models have different modelling equations for the zero
and non-zero portions of the data, there is choice between inserting random effects in any one
of these equations or in both of them. In the latter case, the model will contain 2 random effects
per cluster and these should probably be correlated. Zero-inflation models with random effects
are,  at  the current  stand  of  statistical  software,  beginning  to  become available,  and further
research and applications are likely to be appear in this field. 

22.4.4 GLMMs for categorical data

The  multinomial  models  of  Chapter  17  can  also  be  extended  with  random  effects.  Most
attention in the literature has been paid to extensions of the proportional odds model (Section
17.5), and we illustrate the simplest of these in Example 22.6. The simple multinomial logistic
regression model for nominal (Section 17.3) data can be extended with separate random effects
in each model relative to the reference category  ((Hedeker and Gibbons, 2006), Chapter 11),
and similar extensions can be proposed for other multinomial models, although such models are
not generally available in statistical software.

The proportional  odds model  is  simpler  to  extend  by random effects  than the  multinomial
models because the fixed effects are expressed in a single equation. Adding random effects to
this equation corresponds to adding random effects to the latent (unobserved) variables Si in Eq
17.7.  The  subject-specific  interpretation  of  estimates  and  the  latent  variable  method  for
computing  ICCs are virtually unchanged from the logistic regression models because of the
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similarity of  the modelling equation.  Several  extensions have been proposed to account  for
possible lack of fit, including the possibility of allowing the scale of the linear predictor to vary
between suitably chosen predictor groups. For example, it could be of interest to allow the scale
to vary between raters  in datasets with items graded by multiple raters  ((Rabe-Hesketh and
Skrondal,  2012), Chapter  11) or groups of subjects with particular  characteristics related to
smoking experience ((Hedeker and Gibbons, 2006), Chapter 10). In Example 22.6, we illustrate
the proportional  odds model  with random effects  by the  diarrhea data with a  trichotomous
family-level outcome.

22.4.5 Other random effects models

Mixed models with the random effects on an original scale (instead of the transformed scale as
in a GLMM) do exist, and we briefly mention 2 of them here.

The beta-binomial model has been used in many different ways in medicine and public health
(eg Bandyopadhyay et al (2011); Gakidou and King (2002)). As indicated by the name, it is a
model for binomial data incorporating beta-distributed random effects for probabilities. If the 2

Example 22.5 Random effects count models for diarrhea data
data = brazil_smpl

The table gives maximum likelihood estimates (SE) and the log-likelihood value for Poisson regression
models  with normally and log-gamma distributed municipality random effects,  a negative binomial
regression model with normally distributed municipality random effects for the linear predictor of the
mean (log scale), and a 3-level Poisson model with both community and municipality random effects. 

Outcome dist. Poisson Poisson Neg. binomial Poisson

Random effects dist. normal log-gamma normal normal

cistern -0.566 (0.093) -0.567 (0.093) -0.543 (0.115) -0.586 (0.105)

water_tx -0.313 (0.102) -0.320 (0.101) -0.340 (0.129) -0.273 (0.110)

constant -1.573 (0.166) -1.401 (0.156) -1.560 (0.174) -1.670 (0.170)

σ2(municipality) 0.394 (0.157) 0.345 (0.124) 0.343 (0.149) 0.333 (0.151)

σ2(community) 0.180 (0.076)

log-likelihood -806.50 -805.53 -782.74 -800.36

While the table still only covers a subset of the models, one might want to try for the data, we can
extract some first conclusions. A comparison with the community-level random effects Poisson model
in  Example  22.3  shows  that  the  models  with  municipality-level  variance  fit  better  (larger  log-
likelihood), but the 3-level model is the best of the Poisson models. The 2-level negative binomial
model had a dispersion parameter of α=0.65 (0.14) and much improved fit, thus indicating substantial
overdispersion related to the Poisson distribution. A 3-level negative binomial model would seem the
obvious next  model  to try but ML estimation is not easily accessible in standard software for  this
model.  Alternative distributions for random effects,  such as the shown log-gamma distribution in a
Poisson model and a beta distribution in a negative binomial  model (not shown, see  Cameron and
Trivedie  (1998) for  details),  did not offer  substantial improvements.  It  is seen that the fixed effect
estimates  and  their  SE  were  relatively  stable  across  the  different  modelling  approaches.  In  such
situations, model choice is often guided by ease (or meaningfulness) of the interpretation of model
parameters. 
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parameters (α1, α2) of the beta-distribution are expressed in terms of the mean (μ) and the ICC
(ρ),  the model can be used as  a  regression  model  by incorporating predictors  into a  linear
predictor on logit (or probit) scale just as in a GLM. The expressions for this reparametrisation
are:

1= 1−/ and 2=1−1−/ ,

In  this  model,  the  regression  parameters  will  have  a  PA  interpretation.  It  has  been
recommended as one of the best models for estimating the ICC (Ridout et al, 1999). One major
advantage of the beta-binomial model is that the likelihood function is given by a relatively
simple and explicit formula (which is not the case for GLMMs), and therefore the model is
numerically simpler to compute than GLMMs  (Andreasen and Stryhn, 2008). As one of its
drawbacks, it does not, in a natural way, allow for predictors at the lowest level, nor does it
have any easy extension to several hierarchical levels; it is essentially a model for grouped or
replicated binary data. Recall the assumed relation for the variance of the grouped (binomial)

Example 22.6 Random effects proportional odds model for diarrhea data
data = brazil_smpl

In this example, we consider again the family-level diarrhea data from Examples 22.1 and 22.2 where
the  presence  and  count  of  diarrhea cases  in  each  family  were  analysed  by  logistic  and  Poisson
regression models with community random effects, respectively. We seek to create an ordinal outcome
for each family to distinguish ‘mild’ and ‘severe’ family cases among the 281 families with at least one
individual affected. For the purpose of the example we quite arbitrarily define a mild case as one where
the average number of diarrhea cases in the last month did not exceed 0.5 (per family member included
in the data), and a severe case by this average exceeding 0.5. This definition designates 163 (22.7%)
cases as mild and 118 cases (16.5%) as severe. The results of fitting a 3-level proportional odds model
with the predictors -cistern- and -water_tx- were as follows.

Coef SE Z P 95% CI

cistern -0.691 0.163 -4.25 <0.0001 -1.010 -0.372

water_tx -0.501 0.179 -2.79 0.005 -0.852 -0.149

cutpoint 1 -0.186 0.224

cutpoint 2 1.140 0.232

In addition, the estimated variances components for municipalities and communities were
m

2
=0.4390.201 and  c

2
=0.080 0.137 .

The coefficient for -cistern- corresponds to the effect of cistern presence on the log(odds) for a ‘mild’
case compared with absence of  diarrhea (as well as the log(odds) for a severe case compared with a
mild case) and is hence, comparable to the coefficient of the logistic model in Example 22.1. The two
estimates are indeed similar (with similar SEs), despite that the present model also includes -water_tx-
(which does not strongly affect the coefficient for -cistern-) and includes an additional hierarchical
level. Assessments of the goodness-of-fit of the proportional odds assumption did not reveal problems
with this assumption;  eg parameter estimates were quite similar for a logistic regression across the
mild-severe threshold. The majority of the unexplained variance above the family level resides at the
municipality level, and this is also true for the logistic regression model although we did not discuss
this in Example 22.1, and the 3-level logistic regression model has quite similar variance estimates (not
shown). The estimates here therefore agree well with the analysis of the dichotomous outcome, and the
direction and relative magnitude of estimates also agree with the Poisson regression model (Examples
22.2 and 22.5), although no direct translation between estimates from these two model types exist.
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outcome (Eq 20.4); this assumption is different but not necessarily worse than other variance
assumptions (eg the one implicit in a logistic random effects model); the fit of the beta-binomial
model may be compared with that of other models by the log-likelihood or AIC statistics.

The negative binomial distribution was introduced in Chapter 18 as an extension of a Poisson
distribution with overdispersion. Overdispersion could be understood as random variation in the
mean (λ) of a Poisson-distributed variable (Y). Such variation may be attributed to ‘inter-subject
variability’—a heterogeneity between subjects not accounted for by the Poisson model. If λ has
a gamma distribution with shape parameter 1/α and scale parameter  αμ (equivalently: mean μ
and variance αμ2), then Y is negative binomial distributed with mean μ and variance μ+αμ2, as
shown in Eq 18.9. This distribution may also be called a compound or mixture Poisson model.
Note that these random effects cannot be used for modelling of a hierarchical structure, because
they are already incorporated into the negative binomial distribution and because they are at the
lowest (subject) level. But the negative binomial distribution can also be extended with random
effects, as illustrated in Example 22.5; a recent book on negative binomial models gives a full
theoretical treatment (Hilbe, 2011). 

22.5 STATISTICAL ANALYSIS OF GLMMS

Despite the apparent simplicity of models such as Eq 22.1 and Eq 22.6, analysis of GLMMs is
not straightforward, even in the logistic and Poisson regression settings.  In  contrast to most
other models in the book, even the estimation of parameters is not clear-cut. Different methods
exist, and they may give appreciably different results. No definitive answer exists at this point
as to which method is generally preferable. The maximum likelihood method has been used
throughout most parts of the book and is considered the standard choice here as well if it does
not pose unmanageable computational challenges. Advances in computing power and software
implementations  over  the  last  years  has  made  maximum likelihood  estimation  feasible  for
moderate  to  large  datasets  and  models.  The  implementation  of  GLMMs  is  still  an  active
research area, and one is advised to investigate the options in different software before deciding
on an approach (see also Section 22.6 for notes on current software). We outline briefly the
methods available and indicate where they are discussed in this text.
 1. Maximum  likelihood  estimation  (Section  22.5.1):  the  likelihood  function  involves  an

integral  over  each  random  effect,  which  must  be  approximated  by  a  summation  and
therefore makes ML estimation computationally demanding for large models. 

 2. Quasi-likelihood or iterative weighted least squares estimation (Section 22.5.2): algorithms
for linear  mixed models and GLMs are  combined to produce multiple slightly different
variants of an algorithm, which is fast and computationally simpler than ML estimation. 

 3. Bayesian MCMC (Markov chain Monte Carlo) estimation (Chapter 24): based on a different
statistical  approach  (Bayesian  statistics)  and  a  simulation-based  estimation  that  is
computationally intensive.

All  results shown so far  in this chapter  have been from ML estimation. But how does one
determine which method is best, in general, for one’s own data? One standard answer is to use
simulation,  ie generate artificial data from a model with known values of all parameters and
then compare the results of different methods with those known values. Such simulation studies
are regularly published in statistical journals (eg Browne and Draper (2006)), and you could
also carry out your own simulation study for the data structure at hand (Masaoud and Stryhn,
2010). 
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Even if we as researchers are committed to always using the best possible method to analyse
our data,  it  is useful  to have a sense of when major differences between approaches might
appear (see also the discussion of  biases  by quasi-likelihood procedures  in Section 22.5.2).
Estimation in GLMMs is most difficult if variances are large and/or the information contained
in the data is limited,  eg if replication is sparse. It is generally true that binary data are more
difficult  than  count  data,  and  that  we  should  avoid  fitting  too  ambitious  models  to  even
moderately sized binary datasets. Another possible cause of problems is if multiple clustering
units should have ‘extreme’ predicted values, eg if in a logistic model all individuals in a group
are negative (or all are positive). It almost goes without saying that whenever a dataset or model
shows signs of being ‘difficult’ to estimate, one should be particularly careful with the analysis,
and in such cases comparison of results from analyses using different procedures is often a
fruitful approach.

22.5.1 Maximum likelihood estimation

Maximum likelihood (ML) estimation in GLMMs would, at first sight, seem to be our first
choice, because of the overall strengths of the method (good statistical properties of the ML
estimates) and the access to likelihood-based inference (eg likelihood ratio tests). However, ML
estimation has, until recent years, had the reputation of being unfeasible for any GLMM beyond
the simplest 2-level models, due to the massive and difficult  computations required.  Recent
advances in computer power and software have changed this judgement, although the options
currently available vary considerably among statistical software. It seems plausible that, within
a few years,  ML estimation will  become the standard estimation approach for  all  but  huge
GLMMs.  Even  if  the  method’s  numerical  side  now  looks  promising,  we  outline  why
computation  of  the  likelihood  function  is  so  difficult  and  give  some  cautions  (complex
procedures always have pitfalls, even if the complexities are hidden in the software).

For simplicity,  consider the 2-level logistic regression model (Eq 22.1) and let us begin by
focusing on a single group—group 1. Given the value of u1 (the random effect of group 1), the
conditional likelihood of the observations from that group is binomial,

L1∣u1= ∏
i :groupi =1

pi
Y i1− pi

1−Y i

and  the  full  (sometimes  denoted  marginal)  likelihood  for  those  individuals  is  obtained  by
integration over the distribution of the random effect u1:

L1=∫L1∣u12 g
−1/ 2exp −

1
2

u1
2
/ g

2
 du1 Eq 22.10

The integration  weights  the possible values  of  u1 according to  their  likelihood in a  normal
distribution with mean zero and standard deviation σg. Integrals such as Eq 22.10 cannot be
solved analytically,  and therefore a numerical integration or  quadrature becomes necessary.
By this procedure, the integral is approximated by a weighted sum of values of the integrand ( ie
the function being integrated) at a number of selected quadrature points. Specific weighting
schemes for integrals that involve exponential terms of a squared argument, as in Eq 22.10, are
called  Gauss-Hermite  quadrature.  In  such  schemes,  you  need  to  decide  on  the  number  of
quadrature points and the way they are selected. Generally, increasing their number improves
both  accuracy  and  calculation  time.  Also,  it  is  generally  recommended  that  an  adaptive
approximation  method  be  used,  where  the  quadrature  points  (and  their  weights)  are
successively adapted to the integrand.



632 MIXED MODELS FOR DISCRETE DATA

So far,  we have dealt  only with observations  from one group.  Observations  from different
groups are independent, so the full likelihood function for the entire dataset is obtained as a
product of terms such as Eq 22.10 over the total set of groups. We trust it is not necessary to
write  out  the equation to make the point  that,  not  only computing,  but also maximising,  a
quadrature  approximation to such a multiple integral  with respect  to  the fixed and random
effects parameters of the model can be a formidable task. Extension to multiple levels and/or
multiple random effects at the same level rapidly increases the complexity of the problem. 

To summarise, a few recommendations and cautions for the use of ML estimation for GLMMs:
• ML  estimation  might  be  computationally  unstable  or  the  approximation  of  the

likelihood function may be insufficient; it is highly recommended, therefore, that the
stability  of  results  be  checked  by trying  different  starting  values  of  the  algorithm
and/or different  variants of the numerical  integration procedure,  such as a different
number of quadrature points as well as adaptive procedures,

• ML  estimation  could  be  compared  with  other  approaches  (either  quasi-likelihood
estimation or other approaches for clustered data), and caution should be exercised if
major differences appear; this is in particular recommended if the estimation problem
is ‘difficult’ (as discussed above),

• ML  estimation  in  GLMMs  may  be  impractical  for  model  selection  (because  of
computational  demands);  it  is  then  considered  legitimate  to  use  computationally
simpler  methods for  (part  of)  the model  selection  and then confirm the results  by
running selected models by ML estimation.

In Example 22.7, we examine the stability of the quadrature behind the ML estimates.

22.5.2 Quasi-likelihood estimation

A quasi-likelihood function could be thought of as a substitute for a (real) likelihood function
whenever the latter  does not exist  or is  too difficult  to compute.  In  the early 1990s, when
computers were much less powerful, several algorithms employing an iterative weighted least
squares  scheme were developed to maximise quasi-likelihood functions for GLMMs. These
algorithms are referred to by many different acronyms, typically containing the letters QL (for
quasi-likelihood), PL (for pseudo-likelihood) or ILS (for iterative and least squares), and often
in  combination  with  a  G for  generalised  or  a  W for  weighted  or  an  R for  reweighted  or
restricted.  The main idea of  the iterative  weighted  least  squares  methods is  to compute an
‘adjusted’ variate on the scale given by the link function (eg logistic scale) in each step of the
iteration. Technically, the adjusted variate is obtained by a Taylor expansion of  Y around the
current estimated mean, but one may think of it as a continuous version of the discrete outcome.
Estimation for this adjusted variate is carried out using estimation procedures for linear mixed
models (weighted REML or ML estimation). The procedure continues until convergence of the
parameter estimates. Again, for the technically interested reader, some common options in the
procedure are mentioned below:

• first-  or  second-order  Taylor  expansion,  the  latter  being  considered  more  accurate
whenever the procedure converges,

• ML or REML estimation for the adjusted variate, the latter more commonly used, 
• MQL or PQL form of the adjusted variate (M=marginal, P=predictive or penalised),

the former being computationally more robust by omitting estimates of random effects
in the linear  predictor,  and yields  estimates with a PA interpretation  (Breslow and
Clayton, 1993), contrary to the other procedures for estimation in a GLMM.
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These  3 options  can  be  combined  arbitrarily  (depending  on  the  facilities  of  the  software
package used). Example 22.8 shows results from some of these algorithms.

Many  (statistical)  papers  have  discussed  the  different  versions  of  algorithms  and  their
implementation in software packages (eg Browne and Draper (2006); Zhou et al (1999)). For
well-behaved data, the different variants of the algorithms give very similar results (taking into
account  the standard errors  of  the estimates).  One should whenever  possible use the ‘best’
possible of the above options (second-order, REML, PQL). More importantly,  any ‘strange-
looking’ estimates or standard errors should cause the model to be examined carefully and the
results to be confirmed with other models or estimation methods.

Early  simulation  studies  showed  that  estimates  from  some  of  the  iterative  least  squares
algorithms for GLMMs could be markedly biased towards the null. The bias might affect both
fixed  and  random-effect  parameters,  but  the  latter  are  particularly  sensitive.  The  general
consensus seems to be that particular caution should be exercised if:

• the number of replications at a hierarchical level is ‘small’ (eg less than 5), 
• the corresponding random effect is ‘large’ (eg the variance exceeds 0.5).

In our Example 22.8, the number of family-level replications was moderate, with an average of
4.7 observations per family. The fact that differences in the regression coefficients were still
appreciable is due to the fairly large variance components, in particular at the family level.

Example 22.7 Checking maximum likelihood estimation of a GLMM
data = brazil_smpl

In Example 22.4, ML estimation was used to fit a random effects logistic regression model to the 4-
level  diarrhea data.  This  model  was  refit  using  a  range  of  number  of  quadrature  points  (at  the
municipality,  community,  and family levels) in the estimation procedure (the estimates in Example
22.4 were obtained with 12 quadrature points at each level). The fixed and random effects estimates
from each estimation were:

Number of quadrature points at (munic.,comm.,family) level 

(1,1,1) (3,3,3) (7,7,7) (12,12,12)

age5 (age<=5) 0.836 0.839 0.850 0.850

cistern -0.857 -0.851 -0.861 -0.861

water_tx -0.583 -0.559 -0.583 -0.582

smsize 0.184 0.172 0.178 0.178

constant -2.022 -2.012 -2.057 -2.057

σ2(municipality) 0.384 0.558 0.590 0.590

σ2(community) 0.055 0.121 0.054 0.057

σ2(family) 1.920 1.847 2.205 2.197

log likelihood -1226.911 -1223.604 -1219.189 -1219.226

The default in the software used for the estimation is 7 quadrature points. Using a single (1) quadrature
point is sometimes referred to as a (lowest order) Laplace approximation (Section 22.5.2). With 20
quadrature points, exactly the same estimates were obtained as with 12 points. It is seen that low order
quadrature may affect in particular the variance estimates quite substantially. From 7 quadrature points
upwards the estimates were quite stable; thus the default number of quadrature points seems adequate.
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We finally also mention a related type  of approximation method that  goes  under the name
Laplace approximation. The lowest order Laplace approximation corresponds to using a single
quadrature  point,  but  Laplace  methods have been  continually developed in the last  decade,
involving  high  order  (ie more  accurate)  approximations  and  now  also  providing  useful
approximations to the log-likelihood function (so as to enable likelihood-based inference). A
recent paper concluded that Laplace approximation methods were fully acceptable for Poisson
regression (Pinheiro and Chao, 2006), and a further simulation study explored the accuracy of
the method for both count and binary data (Joe, 2008).

22.5.3 Confidence intervals and tests

Statistical inference in GLMMs is generally only approximate (asymptotically correct when the
number of observations at all hierarchical levels is large). Fixed effects parameters are usually
assessed  by  Wald-type  confidence  intervals  and  tests,  however  likelihood-based  inference
(profile  likelihood  CIs  and  likelihood  ratio  tests,  see  Section  21.5)  may  be  preferable,  in
particular  when  the  parameters  are  highly  correlated  or  not  well-determined.  However,
likelihood-based inference is only feasible when ML estimation is used. As with GLMs, Wald-
type statistics are useless for parameters that are ‘out of bounds’, eg in logistic regression when

Example 22.8 Quasi-likelihood estimation of a GLMM
data = brazil_smpl

Three quasi-likelihood estimation procedures were applied to the 4-level logistic model of Example
22.4. The estimates were obtained using MLwiN software. 

ML (Ex 22.4) 1st order MQL 1st order PQL 2nd order PQL

Coef (SE) Coef (SE) Coef (SE) Coef (SE)

age5 (age<=5) 0.850 (0.125) 0.628 (0.104) 0.716 (0.112) 0.868 (0.132)

cistern -0.861 (0.180) -0.649 (0.133) -0.697 (0.143) -0.866 (0.202)

water_tx -0.582 (0.202) -0.415 (0.151) -0.454 (0.160) -0.580 (0.222)

smsize 0.178 (0.114) 0.129 (0.194) 0.139 (0.096) 0.195 (0.127)

constant -2.057 (0.268) -1.424 (0.194) -1.649 (0.217) -2.109 (0.290)

σ2(municipality) 0.597 (0.281) 0.304 (0.128) 0.437 (0.177) 0.734 (0.313)

σ2(community) 0.059 (0.168) 0.031 (0.080) 0.041 (0.091) 0.060 0.173)

σ2(family) 2.197 (0.371) 1.190 (0.170) 1.140 (0.185) 2.472 (0.347)

The estimates of both first order quasi-likelihood procedures are generally closer to zero than the ML
estimates in Example 22.4. The largest disagreement is seen for the family-level variance which is
about half of the ML estimate. With underestimated variances the regression parameters in random
effects models tend to be attenuated as well. The MQL estimates for the regression coefficients have a
PA interpretation (and should therefore be closer to zero than the SS counterparts), but the scaling
inherent in Eq 22.9 usually implies a similar bias towards zero for SS estimates when the variance is
underestimated. Conversely, the second order PQL variance estimates were somewhat larger than the
ML estimates,  so the regression  coefficients  tended to  be larger  than  their  ML counterparts.  This
example  illustrates  how crucial  unbiased variance  estimation  is  for  SS estimation;  we  discuss  this
further in Section 22.6. Note also that in this example, the Laplace approximation of Example 22.7
gives estimates closer to the ML estimates than the quasi-likelihood procedures.
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one category of a predictor has no cases. Such situations often signal separation issues (Heinze
and  Schemper,  2002),  which  would  typically  also  affect  estimation  of  the  random effects
(therefore, also ML estimates may be affected). 

Reference  distributions  are  most  commonly  ‘asymptotic’,  ie the  standard  normal  or  χ2-
distributions. The resulting inference may be too liberal if replication is sparse at the level of
the  parameter  of  interest,  and  some  software  packages  give  the  option  of  using  similar
approximations as for linear mixed models using  t- and  F-distributions. In general,  no clear
guidelines can be given about the accuracy of approximate inference in GLMMs. As in linear
mixed models,  Wald-type  statistics are inappropriate  for  variance  parameters,  which should
therefore be assessed by likelihood-based inference (Example 22.9) or alternative procedures
such as bootstrapping. 

22.5.4 Prediction

The random effects in GLMMs can be predicted along similar lines as in linear mixed models
(Section 21.5.4) and also exhibit a shrinkage towards the mean. However, some new issues arise
for predictions of observations or their means, because the fixed and random effects reside on a
different scale (eg logit scale). This is related to the distinction between SS and PA parameters.
Following Skrondal & Rabe-Hesketh (2009), we describe 3 different ways of computing predicted
probabilities  in  a  random effects  logistic  regression model in  Example  22.10.  To keep  things
simple we consider the initial 2-level logistic regression from Example 22.1, but the ideas apply
also to prediction in models with multiple levels (where one needs to consider the possible roles of
the units at all hierarchies in the prediction).

22.5.5 Residuals and diagnostics

The standard tools for model-checking—residuals and diagnostics—are even less developed
and accessible  for  GLMMs than  for  linear  mixed  models  (Section  21.5.5).  The distinction
between different types of standard error still holds, but calculations are more difficult, and in
practice one may need to accept whatever is offered by the statistical software  (Skrondal and

Example 22.9 Statistical inference in a GLMM
data = brazil_smpl

The tests and confidence intervals given for the fixed effects in Example 22.4 are ‘asymptotic’; for
example, the 95% CIs are computed as β±1.96*SE(β). Predictors at the family and community levels
have ample replication for the asymptotic inference to be acceptable. With only 21 municipalities in the
data,  the  inference  for  the  municipality-level  predictor  -smsize-  might  be  too  liberal,  but  as  this
predictor did not achieve statistical significance, there is no great need for concern. 

To compute tests for the random effects of the model, we note the log-likelihood value of the fitted
model  (-1219.226)  and refit  the  model  without  the random effect  of  interest.  The models  without
family,  community  or  municipality  random  effects  had  log-likelihood  values  of  (-1284.944),
(1219.288) and (-1228.827), respectively,  so that the corresponding  χ2-statistics with 1 df would be
131.4, 0.13, and 19.2, and thus totally non-significant for the community level and strongly significant
for  the  other  two.  Recall  from  Section  21.5.3  that  P-values  should  be  computed  as  half  the  tail
probability from the χ2(1)-distribution to account for the one-sided alternative hypothesis. To illustrate
likelihood-ratio tests for fixed effects, the likelihood-ratio test for -smsize- gave  χ2(1)=2.18 and a P-
value of 0.14, close to the result of the Wald test in Example 22.4.
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Rabe-Hesketh, 2009). The main new point for GLMMs (compared with linear mixed models) is
that,  because  the  model  has  no  normally  distributed  error  terms  at  the  lowest  level,  the
corresponding residuals  and diagnostics  at  that  level  are  difficult  to  assess.  As an  extreme
example,  in  a  binary  model  all  the  lowest-level  residuals  are  dichotomous  and  cannot  be
expected to conform to a normal distribution. In this case, the residuals at the lowest level are
not  very  informative.  Unfortunately,  the  problems  with  the  lowest-level  residuals  could
penetrate to the higher levels if there is limited replication. Reference distributions and points

Example 22.10 Prediction in a 2-level random effects logistic regression
data = brazil_smpl

We consider again the simple family-level logistic regression model for diarrhea among 717 families in
159 communities with the presence of cisterns as the sole predictor and community random effects
(Example 22.1). The ML estimates for the intercept, the coefficient for X (-cistern-) and the between-
community variance were, respectively:

0=−0.154 , 1=−0.703 ,  g
2
=0.592

We wish to predict the probability of  diarrhea in families with and without cisterns. Three possible
interpretations exist for such probabilities, when taking into account the community:

1. Probability  for  families  in  a  hypothetical  community For  any  given  (hypothetical)
community random effect u, we can compute a community-specific (conditional) probability
as: p(1)=logit-1(β0+β1  X+u). Using u=0 gives the median probability across the population of
communities. We can also insert u=±1.96σg to get a 95% range across this population.

2. Mean probability for families from any community The approximation formula Eq 22.2

gives this  PA probability as:  p(2)≈logit-1((β0+β1  X)/√(1+0.346   g
2
)). In the table below, we

used  a  more  exact  approximation  for  p(2) based  on  quadrature  (see  Skrondal  &  Rabe-
Hesketh (2009) for details).

3. Probability for families in a specific community included in the study  When predicting
for a specific community (as in the table below), we need to incorporate the information we
have about its random effect. Due to the non-linearity of the logit function, simply inserting
the predicted community random effect (p(1) with u(comm)) does not work exactly; instead,
we  need  to  compute  the  mean  probability  averaged  across  the  posterior  distribution  (in
Bayesian terminology, see Chapter 24) of the random effect. Some statistical software will
provide this calculation (p(3)).

The table below gives the 3 probabilities for the 2 categories of the predictor and two of the most
extreme communities. 

cistern comm # u(comm) p(1) with u=0 p(2) p(1) with u(comm) p(3)

no 51 1.010 0.462 0.466 0.709 0.692

64 -1.058 0.538 0.536

yes 51 1.010 0.298 0.319 0.229 0.244

64 -1.058 0.128 0.142

As the intercept is close to zero, the first 2 predicted probabilities are close to 0.5 for families without a
cistern. Some population-averaging towards 0.5 is seen for p(2) when compared with p(1) in families
with a cistern. The predicted probabilities in study communities with actual estimated random effects
are quite different (but these were extreme communities). The calculation with the estimated random
effect inserted gives only slightly different values than the correctly calculated probability p(3).
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for residuals and diagnostics are therefore difficult to use rigorously, and one is advised instead
to look for data points that are extreme in some way relative to the rest of the data. Example
22.11 presents residuals from our full 4-level analysis of the diarrhea data.

Example 22.11 Residuals from a 4-level GLMM
data = brazil_smpl

The  4-level  logistic  regression  the  full
diarrhea data of Example 22.4 has residuals
at all 4 hierarchical levels but the lowest-level
residuals are of little use in this case so we
disregard them completely.  A normal (Q-Q)
plot  for  the  717  family-level  standardised
residuals  is  given  in  Fig.  22.2.  The  plot
shows a curious pattern,  far  from a straight
line  but  instead  with  2  separate,  almost
straight,  lines.  One  must  realise  that  with
typically  only  3–6  observations  per  family,
these residuals are too discrete to realistically
be expected to look like a normal distribution
sample.  For  example,  the lower  part  of  the
plot  corresponds  to  families  without  any
cases of  diarrhea (so negative residuals) and
the  upper  part  of  the  plot  to  families  with
multiple cases. It seems difficult to assess from the plot whether there are problems with the normal
distribution assumption at the family level. 

As the community-level random effects do not explain any major part of the variation, we focus instead
on the top (municipality) level. Fig. 22.3 shows the 21 municipality-level residuals depicted in a normal
plot and plotted against the municipality-level predicted values based on all predictors. The normal plot
is fairly straight but reveals one negatively outlying municipality, and the residual plot reveals another
municipality with a much larger predicted values than the rest. Both of these municipalities warrant
further inspection, in particular would one want to assess how influential they are for the results.

Fig. 22.3 Normal plot (left) and plot against predicted values (right) for municipality-
level residuals of 4-level model for diarrhea data
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Fig. 22.2 Normal plot for family-level residuals 
of 4-level model for diarrhea data
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GLMM analogues  of  some  of  the  special  statistics  for  discrete  data,  such  as  the  Hosmer-
Lemeshow  test  for  goodness  of  fit  in  a  logistic-regression  model,  are  not  available.  A
simulation-based goodness-of-fit test for GLMMs has been described, but this procedure does
not seem to be available in standard software (Waagepetersen, 2006).

22.5.6 Robustness against model misspecification

Much of the discussion of robustness of linear mixed model analysis to model specification in
Section 21.5.7 carries over to GLMMs. One notable difference is that the use of robust standard
errors is less obvious with non-normal data. A substantial body of research has been undertaken
in the last decade on misspecification of GLMMs, in particular by McCulloch and Neuhaus
whose work is summarised in  McCulloch et al (2008), Chapter 12. Additional work includes
(Heagerty  and  Kurland,  2001),  and  (Litiere et  al,  2008).  One conclusion  that  seems to  be
common for this work is that misspecification of the random effects distribution may not be
terribly serious (McCulloch and Neuhaus, 2009).

22.5.7 Over- and underdispersion in GLMMs

Non-distributional dispersion in GLMs was discussed in Section 20.5.3, and it was explained
how an extra-binomial dispersion parameter could be added to a binomial model within the
GLM framework. A similar multiplicative dispersion parameter  φ can be added to a Poisson
model  by  the  specification  that  var(Yi)=φλi,  where  φ=1  corresponds  to  the  usual  Poisson
distribution, and also to other models for count and categorical data. We discussed in Section
20.5.3 how the extra-binomial parameter could account for clustering, although this method was
not as attractive as other modelling approaches such as mixed models. In Chapter 16, we also
discussed other ways that an apparent over- or underdispersion could arise. The question we
address here is the utility of allowing for extra-distributional dispersion in mixed models, where
the random effects should account for the hierarchical structure. 

Our  first  observation  is  that  extra-distributional  parameters  only  exist  within  the  GLM
framework  where  models  are  incompletely  specified  and  estimation  is  based  on  quasi-
likelihood-type functions (Section 22.5.2). The fact that no data-generating mechanism exists
for these models has been put forward as a major disadvantage of the approach (Skrondal and
Rabe-Hesketh, 2007). It does indeed seem awkward to recommend the use of an approach that
is only available in a subset of less attractive estimation procedures for GLMMs. Nevertheless,
it  is  conceivable that a dataset  could contain a dispersion that does not match the  ‘natural’
distribution, even after the fixed and random effects have been incorporated into the model. In
this sense, inclusion of an extra-distributional parameter may serve as a diagnostic tool. Values
of  φ substantially different from 1 would then lead us to either explore different distributions
(where feasible), adopt the scaling of standard errors implicit in the quasi-likelihood estimation
procedures, or perhaps ignore the finding.

If  underdispersion  is  indicated,  one  should  look  for  any  reasons  for  negative  correlations
between observations, the standard example being competition in a group of individuals for a
limited resource. If no such explanation can be found, as underdispersion means a better fit than
expected to the data of our model, we often tend not to worry much about it (maybe it was just
‘good luck’). By ignoring an appreciable underdispersion and pretending the dispersion to be as
predicted  by  our  model  (when  it  is  in  reality  smaller),  our  statistical  inference  becomes
conservative—which may be considered the appropriate approach for ‘a case of good luck’.
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Underdispersion (as well as very small values of one-sided test statistics) may, however, also
indicate something strange to be going on in the data, so one should inspect the data critically
(once  more).  To  scale  down the  standard  errors  by  an  underdispersion  factor  is  a  serious
decision because it may lead to spurious significance, and should probably only be done when
there  is  a  biological  explanation  of  the  phenomenon.  It  might  be useful  to  also  try robust
standard errors (Section 20.5.4) to see if they point in the same direction. 

Overdispersion may be easier to understand intuitively and it may be considered less serious to
inflate the standard errors; again, a comparison with robust standard errors might be useful. In
some special cases, specific advice can be given on the modelling. First, if overdispersion is
encountered in a Poisson model, it seems natural to try instead a negative binomial distribution
(Chapter 18). Second, if overdispersion is encountered in a (mixed) model for grouped binary
data (ie a binomial model with denominator >1), one may introduce a random effect at the
group  level  which  could  then  effectively  remove  the  overdispersion  (Browne et  al,  2005;
Skrondal and Rabe-Hesketh, 2007). Third, if the outcome is binary, extra-binomial dispersion
cannot exist  (Skrondal and Rabe-Hesketh, 2007); this is the same situation as in an ordinary
GLM (Section 16.12). The same consideration exists for single categorical observations in a
multinomial  model.  Notwithstanding this  fact,  many quasi-likelihood estimation  procedures
allow estimation of an ‘extra-binomial’ parameter for binary data, and many examples exist of
such models fitted and published (Skrondal and Rabe-Hesketh, 2007). It is not clear what these
estimation procedures actually estimate in the data, and interpretation of the estimated value of
φ beyond a nondescript ‘diagnostic’ is hard to give. Skrondal and Rabe-Hesketh argue that the
extra-dispersion parameter should be avoided in these instances.

22.6 SUMMARY REMARKS ON ANALYSIS OF DISCRETE CLUSTERED DATA

Throughout this chapter we have emphasised the distinction between cluster-specific (SS) and
marginal (PA) modelling and interpretation of effects. We have also noted that SS parameters
reside on a different scale than PA parameters,  and that the difference between the  2 scales
depends  on  the  magnitude  of  the  variance  components  (eg Eq  22.2).  This  scaling  of  SS
parameters (relative to PA parameters) by a factor depending on the variances has the perhaps
undesired  consequence  that  SS  parameters  become  difficult  to  compare  between  different
datasets and analyses. As the estimates of variance parameters are particularly sensitive to the
choice of estimation procedure,  the fixed effects  will,  whenever the variances  are large,  be
equally sensitive.  This was the main reason behind our recommendation in Section 22.5 to
exercise particular caution with the analysis when variances are large. In situations where the
interest is in PA parameters, it seems awkward to start the process by obtaining estimates on
another  scale  that  may  be  difficult  to  establish  firmly  (when  variances  are  large)  before
converting  back  to  the  scale  of  interest.  Such  reasoning  has  spurred  the  development  of
marginalized  models,  in  which  fixed  effects  are  modelled  on  PA  scale  while  a  random
structure is retained on SS scale ((Diggle et al, 2002), Chapter 11). Although first results with
this new class of models were promising  (Heagerty and Zeger, 2000), these models have not
gained much popularity because they are not available in standard statistical software. 

Several topics for mixed models covered in Chapter 21 (eg sample size) have not received a
special treatment in this chapter  because the coverage in Chapter 21 largely carries  over or
gives the relevant pointers also for GLMMs. The literature on GLMMs is huge and still rapidly
expanding,  including  in  recent  years  many  excellent  textbooks  (often  also  covering  linear
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mixed models,  see  the  brief  overview in  Section  21.5,  and/or  repeated  measures  data,  see
Chapter 23). 

Let  us at  this point attempt a brief summary of the current status of statistical software for
GLMMs. The field is more diverse and confusing than for linear mixed models, due to the
existence  of  different  estimation  procedures  and  the  continuing  emergence  of  algorithms
improved  in  speed  and  flexibility.  For  maximum  likelihood  estimation by  numerical
integration, Stata is arguably the most versatile statistical software package, because it offers
both standard multilevel routines for binomial and count data with no restrictions on the number
of hierarchical levels and cross-classification, and the powerful Generalised Linear Latent And
Mixed Models (-gllamm-) macro for multilevel modelling implemented in Stata (Rabe-Hesketh
and Skrondal, 2008). The -gllamm- software also implements a wide range of models involving
latent  variables  (Skrondal  and  Rabe-Hesketh,  2004).  Implementations  of  ML estimation  in
other packages is more limited, but updates are likely to occur rapidly. For  quasi-likelihood
estimation, many different implementations exist, both in general-purpose statistical software
(eg SAS,  R/S-Plus)  and  in  specialised  multilevel  packages  (MLwiN,  HLM),  with  variable
accuracy and flexibility of the algorithms. Another specialised package for mixed models (AD
Model Builder) offers high order Laplace approximations.

A variety of approaches for dealing with clustered data has been presented in this and previous
chapters, and 2 more are to come in Chapters 23 and 24. We conclude by revisiting the family
level diarrhea data in which we present a comparative table of estimates and a brief discussion
(Example 22.12).
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Example 22.12 Summary of analyses for family-level diarrhea data
data = brazil_smpl

In order to enable a sensible comparison between approaches to account for a 2-level structure, only the
clustering of families in the 21 municipalities was considered. Previous analyses in Examples 22.1 and
22.10 accounted (by random effects) for clustering at the community level, but just as in the full 4-level
hierarchy  the  clustering  is  stronger  at  the  municipality  than  the  community  level.  The  preferred
approach is still to account for all hierarchical levels; see Section 23.5 for a comparison between GEE
and GLMM in a 3-level hierarchy. The outcome evaluated was any diarrhea within the family and the
models fit were:

• logistic - ordinary logistic model ignoring clustering
• robust  - ordinary logistic regression with robust SEs
• fixed - ordinary logistic regression with municipalities fit as fixed effects
• stratification - Mantel-Haenszel estimation (stratified by municipality) (Chapter 13)
• GLMM - generalised linear mixed model
• GEE - generalised estimating equation (Chapter 23) using an exchangeable working correlation 

structure
• Bayesian (Chapter 24) - analysis reported the posterior median and SD from a mixed model 

with standard flat priors. 

The grouping  of  estimates  into SS (both  GLMMs)  and PA (logistic  and GEE) was  expected (see
Example 20.4), whereby the fixed effects and stratified estimates fell somewhat outside the pattern.
Due to the small number of clusters, robust SEs (also for GEE) may have been overestimated.

Predictor Model β SE

cistern logistic -0.616 0.155

robust variance -0.616 0.219

fixed effects -0.684 0.166

stratification -0.648 0.161

GLMM -0.668 0.162

GEE -0.612 0.221

Bayesian GLMM -0.668 0.163
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