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INTRODUCTION TO BAYESIAN ANALYSIS
Chapter contributed by Henrik Stryhn and William Browne

OBJECTIVES

After reading this chapter, you should be able to:

 1. Understand  the  basic  differences  between  Bayesian  and  classical  (likelihood-based  or 
frequentist) statistical approaches.

 2. Understand how to fit standard regression models with non-informative priors and Markov 
chain Monte Carlo (MCMC) estimation. 

 3. Assess whether a chain produced by an MCMC procedure appears to be well-suited for 
sampling from the posterior distribution (and hence MCMC inference).

 4. Use a Bayesian hierarchical model for analysing clustered data and extend this modelling to 
incorporate more complex data structures. 

 5. Understand how other modelling extensions such as missing data, measurement errors, and 
imperfect tests can be fitted using MCMC.

 6. Understand how others have used the Bayesian framework and MCMC to combine existing 
data and expert opinions with new data using informative prior distributions. 
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24.1 INTRODUCTION

The previous 4 chapters have all looked at the problem of clustering (lack of independence 
among observations) in a dataset. We have seen how clustering is common to many datasets 
that we deal with in epidemiology. There are many methodological approaches to dealing with 
clustering, and in this chapter we introduce a completely different approach to statistics and 
associated methods that are useful in the mixed model setting as well as for both the simpler 
non-clustered datasets and other more complex structures.

This chapter will first describe the alternative Bayesian statistics paradigm and contrast it with 
the classical or ‘frequentist’ statistics that all other work in this book has so far relied upon. We 
will next describe the associated Markov chain Monte Carlo methods that are generally used to 
fit complex Bayesian models. We will then revisit examples from the earlier chapters and show 
what  differences  the  Bayesian  approach  leads  to  before  moving  on  to  the  mixed  models 
described in the previous 4 chapters. We will finish the chapter by discussing other possible 
model elaborations such as more complex clustering structures, missing data, and measurement 
error that can be easily incorporated into the Bayesian framework and some mention of the 
incorporation of expert opinion into statistical analysis. 

24.2 BAYESIAN ANALYSIS

Little known outside statistical science, there exist (at least) 2 different approaches for statistical 
inference, which have different concepts and philosophical bases and will, in general, lead to 
different  results.  The rivalry between the classical  and Bayesian schools has  persisted over 
decades,  with neither  emerging  as  the clear  winner.  Many statisticians  cling to  the  middle 
ground believing that each of the 2 approaches has its weaknesses and strengths which make 
each of them attractive in particular situations. However, many (introductory) statistics courses 
are taught within the non-Bayesian (classical, likelihood-based, frequentist) framework with no 
reference to the Bayesian view. 

Bayesian analysis has gained in popularity in recent years and has, for example, been applied to 
complex problems in epidemiology such as risk assessment (eg Aven and Eidesen (2007)) or 
evaluation of diagnostic tests without a gold standard (eg Dendukuri et al (2009)), and to the 
analysis of multilevel data (eg Gelman and Hill (2006); Goldstein et al (2002a)). The scope of 
practical Bayesian inference has been increased widely by the invention and recent advances of 
a  simulation-based  tool  for  statistical  inference:  Markov  chain  Monte  Carlo (MCMC) 
estimation (eg Gilks et  al (1996)).  The analysis  of  most  complex  models  by the  Bayesian 
approach  is  based on MCMC methods,  one alternative  being the recently developed INLA 
(integrated nested Laplace approximation) method (Rue et al, 2009).

We  hope  the  reader  will  bear  with  us  for  the  inevitable  inadequacy  of  a  one-chapter 
introduction to a full, new statistical approach. Our aim can only be to give little more than a 
superficial impression of the ideas and steps involved in a Bayesian analysis. Recent textbooks 
on applied Bayesian analysis in the health and biological sciences (eg Christensen et al (2010); 
Gelman et  al (2004)) would be a good starting point  for  a more detailed discussion. Most 
Bayesian analyses require specialised software, and one common choice is the (free) WinBUGS 
programme  developed  by  the  Medical  Research  Council  Biostatistics  Unit  in  Cambridge 
(http://www.mrc-bsu.cam.ac.uk/bugs/), or subsequent developments hereof. BUGS is short for 

http://www.mrc-bsu.cam.ac.uk/bugs/
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Bayesian analysis using Gibbs sampling, which is a particular type of MCMC analysis. The 
analyses of this section were, however, carried out using the MLwiN software (version 2.24).

24.2.1 Bayesian paradigm

Bayesian methodology owes its name to the fundamental role that  Bayes’ theorem (see Eq 
24.1) plays in it. In Bayesian reasoning, uncertainty is attributed to the parameters while the 
sampled data is regarded as a fixed quantity once collected. This means that all parameters are 
modelled by distributions. Before any data are obtained, the knowledge about the parameters of 
a problem is expressed in the prior distribution of the parameters. Given actual data, the prior 
distribution and the data are combined to generate the posterior distribution of the parameters. 
The posterior distribution summarises our knowledge about the parameters after observing the 
data.  The major differences  between classical  and Bayesian inference are outlined in Table 
24.1, and will be detailed in the sections that follow.

Table 24.1 Bayesian versus classical approaches to statistics
Concept Classical approach Bayesian approach

Parameter Fixed (unknown) constant Distribution of possible values

Prior information on 
parameters

None Prior distribution

Base of inference Likelihood function Posterior distribution

Parameter point estimate Estimate (eg maximum 
likelihood estimate (MLE))

Statistic from posterior distribution 
eg mean, median or mode

Parameter interval estimate Confidence interval Bayesian credible interval

Hypothesis testing/
Model comparison

Test (eg LRT)/criterion (eg 
AIC)

Bayes' factors/criterion (eg DIC)

Let us briefly indicate the way the prior and the data are merged, and denote by Y the data, by θ 
the parameter (vector), and

• L(Y|θ) – the likelihood function,
•  ƒ(θ) – the prior distribution for θ, 
• ƒ(θ|Y) – the posterior distribution for θ after observing data Y

where  the  ƒ(·)s  are  either  probability  functions  (discrete  data)  or  probability  densities 
(continuous data). With these definitions, Bayes’ theorem states that:

ƒ ∣Y  = const Y ∗L Y∣∗ƒ  Eq 24.1

where const(Y) is a constant depending on Y but not on θ. Thus, the posterior distribution for θ 
is essentially constructed by multiplying together the likelihood and the prior, and is a sort of 
compromise between the 2. In complex models,  the constant depending on  Y in Eq 24.1 is 
virtually impossible to calculate. This means that the posterior distribution cannot be calculated 
analytically,  and  therefore  alternative  methods  need  to  be  used.  This  intractability  of  the 
posterior distribution for all  but  the simplest  problems meant that  up until  the early 1990s, 
Bayesian  statistics  was  more  of  a  theoretical  subject  than  an  applied  one.  The  increase  of 
computer speed and memory capacity and the introduction of simulation-based methods such as 
MCMC have had a great impact on Bayesian analysis and its use in real-world problems. 
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24.2.2 Statistical analysis using the posterior distribution

Even if it might seem awkward to discuss the posterior distribution before the prior distribution, 
let  us  see  a  simple  example  of  Bayesian  analysis  (Example  24.1)  before  turning  to  the 
discussion of how to choose the prior distribution. The net result of a Bayesian analysis is a 
distribution, and the analysis might, therefore, be conveniently summarised by a graph (Fig. 
24.1). Point estimates and confidence intervals are not truly Bayesian in spirit, but values such 
as  the  mean,  median,  or  mode,  and  intervals  comprising  a  certain  probability  mass  of  the 
posterior (sometimes called  probability or  credible intervals) might be calculated from the 
posterior distribution. Both the posterior mean and median are commonly used as point values, 
as they can be easily calculated directly from MCMC methods. The (joint) posterior mode is 
also used and is evaluated by finding the parameter point estimates simulated via MCMC that 
have  generated  the  largest  value  of  the posterior  distribution,  and hence  it  is  also  called a 
maximum  a posteriori (MAP) estimate. In the classical framework, the maximum likelihood 
estimate (MLE) is the maximum of the likelihood function, and so for non-informative priors 
(as discussed next) the mode should agree with the MLE.

24.2.3 Choice of prior distributions

Generally, it can be said that the strength and weakness of Bayesian methods lie in the prior 
distributions. In highly multidimensional and complex problems, it is possible to incorporate 
model  structure  by  means  of  prior  distributions;  such  an  approach  has  been  fruitful,  for 
example, in image analysis. The posterior of one analysis can also be taken as the prior for a 
subsequent  study,  thereby  enabling  successive  updates  of  the  collected  and  available 
information, as we will discuss later. On the other hand, the choice of prior distributions might 
seem open to a certain arbitrariness,  even if subjectivity in the prior does not contradict the 
Bayesian paradigm. In the past, priors have often been chosen in a particular form allowing for 
explicit calculation of the posterior (conjugate priors) but, with access to MCMC methods, 
these have somewhat decreased in importance though are often still used.

Let us revisit Example 24.1 to explain how conjugate priors were part of the modelling. First, a 
binomial likelihood for the unknown proportion was combined with a uniform prior to create a 
beta posterior distribution. Then we showed that this beta posterior distribution can itself be 
combined as a prior distribution with further (binomial) data to again produce a beta posterior 
distribution. A conjugate prior distribution by definition is a prior which, when combined with 
a specific likelihood, produces a posterior of the same form as the prior. In this case, the beta 
distribution  is  the  conjugate  prior  for  the  proportion/probability  parameter  in  a  binomial 
distribution.  Also,  the  uniform prior  initially  used  is  equivalent  to  a  beta-distribution  with 
parameters (1,1), which explains why a beta posterior resulted when it was used as a prior.

Other conjugate prior distributions include the normal distribution for the mean of a normal 
likelihood, the gamma distribution for the precision (1/variance) of a normal likelihood and 
again the gamma distribution for the mean of a Poisson likelihood.  Note A conjugate prior 
distribution  determines  only  the  type  of  distribution,  not  its  specific  parameters  or 
characteristics such as the mean and variance.

A common choice of prior (in particular among less-devoted Bayesian researchers) is a  non-
informative (flat, vague, or diffuse) prior, which gives minimal preference to any particular 
values for θ. As an extreme case, if we take p(θ) ≡ 1 in Eq 24.1, the posterior distribution is just 
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Example 24.1 Bayesian analysis of proportions

Assume that we test 10 individuals for a disease or condition with a highly variable prevalence. In one 
scenario, 5 of the individuals tested positive; in another, 8 individuals tested positive. What information 
have we obtained about the disease prevalence in these 2 scenarios? 

Recall that all Bayesian analyses involve a prior distribution, in this case for the disease prevalence P. 
Assume  (somewhat  unrealistically)  that  we  had  no  particular  prior  information  (due  to  the  high 
variability of the disease) so that  a priori all values of  P would seem equally likely. Then we could 
choose a uniform distribution on (0,1) as our prior; this is an example of an non-informative prior 
(Section 24.2.3). The probability density of the uniform distribution is constant (1). The likelihood 
function for observing the number of positive individuals out of 10 are the probabilities of the binomial 
(10,  P)  distribution.  Therefore,  if  we  observe  Y positive  individuals,  the  posterior  distribution has 
density:

f P∣Y =const Y ∗PY 1−P 10−Y∗1=const Y PY 1−P 10−Y

This probability density corresponds to a beta-distribution with parameters (Y+1,10-Y+1). The constant, 
const(Y), can be determined from Bayes’ formula, but after having identified the posterior as a beta 
distribution, we get the constant from its density (it equals  101∗10

Y
 ). Corresponding to observed 

values of Y=5 and Y=8, respectively, Fig. 24.1 shows beta distributions with parameters (6,6) and (9,3).

If we wanted to summarise our knowledge about P, we could use the mean, median, or mode of the 
distribution;  for  the  2 beta-distributions,  they equal  (0.5,0.5,0.5)  and (0.75,0.764,0.8),  respectively. 
These values can be compared with the usual estimates P=0.5 and P=0.8; the agreement of the mode 
and maximum likelihood estimate is no coincidence. If we wanted to summarise our knowledge about 
P into a 95% interval, we could choose the interval with endpoints equal to the 2.5 and 97.5 percentiles 
of the distribution; for the 2 beta-distributions they are (0.234,0.766) and (0.482,0.940). These intervals 
might be compared with the (exact) binomial confidence intervals of (0.187,0.813) and (0.444,0.975). 
The confidence intervals are wider than the credible intervals. 

If  instead we  consider  the  2 observations  to  be successive  trials,  then we  could use the  beta(6,6) 
distribution obtained from the first scenario as a prior for the second scenario. We then have:

f P∣Y 2=const Y 2 ∗PY 21−P 10−Y 2∗P6 1−P 6=const Y 2 PY 26 1−P16−Y 2

With an outcome of the second trial of Y2=8, this corresponds to a beta(14,8) distribution. We would 
get the same posterior if we had swapped the order of the 2 scenarios or indeed if we had considered all 
the data to be one dataset with 13 positive tests out of 20. This shows how Bayesian methods can be 
used in real time examples where data appear sequentially.

Fig. 24.1 Posterior distributions after 5 and 8 
out of 10 individuals tested positive
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the  likelihood  function.  So,  for  example,  maximising  the  posterior  (MAP estimate)  yields 
exactly the maximum likelihood estimate. Therefore, we would by and large expect Bayesian 
inference with non-informative priors to be similar to likelihood-based inference. To take p(θ) 
constant is not always possible, but an alternative for a parameter (which can take any value) is 
a normal distribution with zero mean and a very large variance, effectively making values in a 
large interval around zero equally probable. As a technical note, it is sometimes possible to use 
an improper prior distribution, which is not a real probability distribution because it does not 
satisfy the condition of a finite probability of the entire sample space. The main example of an 
improper distribution is a constant value on an unbounded space (eg the constant 1 on the entire 
real line). Such a uniform prior can be thought of as a limiting case of normal distributions with 
very large variances. Despite the improper prior distribution, the posterior distribution may be 
perfectly well-defined, and therefore this type of uniform distribution is a popular choice for a 
non-informative prior. For a variance parameter,  where values below zero are impossible,  a 
standard non-informative distribution is a gamma distribution for the inverse of the variance 
with parameters that ensure the distribution to be concentrated close to zero (equivalent to very 
large variances). 

24.3 MARKOV CHAIN MONTE CARLO ESTIMATION

Note This section uses a notation somewhat inconsistent with the rest of the book in order to 
stay reasonably  in  line with the usual  notation in  the  field.  In  particular,  X1,  X2,...  are  not 
predictor variables.

Markov chains

A  Markov  chain  (named  after  the  Russian  mathematician  AA  Markov)  is  a  process  (or 
sequence) (X0, X1, X2,…) of random variables which satisfies the Markov property (below). The 
variables  take  values  in  a  state  space  which  can  be  either  finite  (eg  {0,1}),  discrete  (eg 
{0,1,2,3…}) or continuous (eg an interval, possibly infinite). The value of X0 is the initial state 
of the chain, and the steps of the chain often correspond to evolution over time. The Markov 
property is a strong assumption about the probability distribution of the process (Xt):

distribution of X t1 , X t2 , given X 0 , X 1 , , X t 
= distribution of  X t1 , X t2 , given only X t  Eq 24.2

In words, the future (of the process) depends on the past only through its present state. Thus, 
the chain has a ‘short memory’.  Some examples of Markov chains are processes describing 
games, population sizes, and queues. For example, Markov models for population size assume 
that  the  development  of  a  population  after  any  given  time  point  depends  only  on  the 
population’s size at that time, and hence can be described solely in terms of birth, death, and 
migration rates. Examples of non-Markov processes are periodic phenomena and growth curves 
which do not have such ‘short memory’. Our interest here is in homogeneous chains in which 
development  does  not  change  over  time.  For  such  chains  the  Markov  condition  (Eq  24.2) 
implies that whenever the chain has reached state x, it evolves from there as if it was restarted 
with  X0=x.  The  importance  of  homogeneous  chains  is  that  under  some  further,  technical 
conditions they converge to limiting distributions as time runs.  That is, distr(Xt)→π as time 
runs,  where  π is  the  limiting (or  stationary)  distribution (and in  this  case  not  the  number 
3.1415926…).  This  implies,  for  example,  that  p(Xt=x)→π(x).  Example  24.2  illustrates  the 
convergence of a simple Markov chain.



INTRODUCTION TO BAYESIAN ANALYSIS 681

24.3.1 Introduction to Markov chain Monte Carlo

The idea  of  MCMC estimation  is  simple,  yet  surprising.  Suppose  we were  interested  in  a 
particular  distribution  π,  but  that  quantities from this distribution were difficult  to calculate 
because  its  analytical  form  is  unknown  (the  distribution  we  have  in  mind  is  a  posterior 
distribution from a complicated model). Suppose furthermore, that we were able to devise a 
Markov chain (Xt) such that distr(Xt)→π. Then, in order to calculate statistics from π, we could 
run our Markov chain for a long time, for example, up to time step T (where T is large), to make 
the distribution of all  Xt for  t  ≥ T a good approximation to  π. Then in order to calculate, for 
example, the mean of the distribution, we could simply average over a sample of observations 
from the chain after time T. In a formula this would appear as:

E ≈ 1
n ∑

t=T 1

s=T n

X t
Eq 24.3

Note that our sample from (Xt) is nothing like an independent sample (it is n successive values 
from a Markov chain which will be correlated). Despite the correlation, we can still use the 
formula to estimate E(π); however, our precision will be less than if we had an independent 
sample, and very much so if there is strong correlation in the chain. This precision will increase 

Example 24.2 Convergence of a homogeneous Markov chain

The simplest example of a homogeneous Markov chain has state space {0,1}. The states 0 and 1 could, 
for example,  correspond to disease states (healthy/sick) or system states (busy/idle).  The transitions 
from one state to the next are governed by a transition matrix

P= p00 p01

p10 p11
where  p00+p01=1 and  p10+p11=1. For example, from state 0 the process continues to state 1 
with probability  p01  (and stays  in state 0 with probability  p00). This chain has a stationary 
distribution whenever all probabilities are non-zero, and π(1)= p01/(p01 +p10). Fig. 24.2 shows 
the convergence of p(Xt=1) from the initial state X0=0 in a model with p01=0.8 and p10=0.7; 
the limiting probability of 0.5333 is reached very quickly.

Fig. 24.2 Convergence of a Markov chain 
to its limiting probability distribution
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as we run the chain for longer, and we can calculate a quantity called the Monte Carlo standard 
error (MCSE) which describes the uncertainty due to the simulation nature of the method. The 
MCSE is a function of the parameter’s actual uncertainty, the correlation in the chain, and the 
length  of  the estimation sample from the  chain  (n). For  uncorrelated  chains,  the MCSE is 
proportional to 1/√n.

Other statistics as well  as  the mean might  be computed from the limiting distribution. The 
initial  part  of  the  chain,  X0,…,XT,  is  called  the  burn-in period and  the  parameter  values 
associated with the burn-in are discarded before summary measures are calculated (as shown in 
Eq 24.3).

Apparently the flaw of this idea is the necessity to construct a Markov chain with  π as the 
limiting distribution, when we haven’t even got an analytical form for  π. However, this turns 
out to be possible for many multidimensional statistical models where π is known only up to a 
proportionality constant (such as const(Y) in Eq 24.1). To construct a Markov chain, one needs 
to specify its transition mechanism (in Example 24.2 above, the transition matrix  P), whereas 
the starting value is of minor importance. There are 2 major, general techniques for doing this: 
Gibbs sampling and Metropolis-Hastings sampling (technically, Gibbs sampling is a special 
case of Metropolis-Hastings sampling but usually is considered to be a separate method). One 
major practical complication involved in MCMC estimation is the length of the burn-in period, 
in order to make estimation from Eq 24.3 valid. Constructed Markov chains might converge 
rapidly or  very slowly to  their  limiting distribution,  sometimes so slowly that  the  chain  is 
useless  for  estimation  purposes.  Therefore,  it  is  crucial  to  have  tools  for  monitoring  the 
convergence and the required  length of  burn-in periods.  The MCMC software will  provide 
some diagnostics tools for monitoring. In the next 2 sections we will provide a brief explanation 
of how Gibbs and Metropolis-Hastings sampling works. Gibbs sampling can be easily applied 
to  normal  response  models,  whereas  Metropolis-Hastings  sampling  can  be  applied  more 
generally but might result in highly correlated and very slowly converging chains.

24.3.2 Gibbs sampling for linear and linear mixed models

The Gibbs sampling algorithm for a regression model is based on the conjugate distributions for 
the mean and variance parameters in a normal likelihood/model (Section 24.2.3). Let us first 
consider a simple linear regression model:

Y i=01 X ii , i ~ N 0,2

Here we have 3 unknown parameters: the intercept (β0), the slope (β1), and the residual variance 
(σ2),  which in  a  Bayesian  regression all  need prior  distributions.  We will  generally choose 
conjugate priors, namely normal priors for the intercept and slope and an inverse gamma prior 
for the variance (equivalently a gamma prior for the precision). It is actually possible in this 
setting to derive the posterior distribution (a normal-inverse gamma distribution), however we 
will illustrate how we would implement the Gibbs sampling algorithm for this problem.

The full  posterior  distribution is  f  (β0,  β1,  σ2|Y), but  in Gibbs sampling instead of sampling 
directly from this multivariate distribution, we sample from the series of conditional posterior 
distributions,

f 0∣Y ,1 , 2 , f 1∣Y ,0 ,2 , and f 2∣Y ,0 ,1

In  each  sampling  step,  we  use  the  current  values  for  the  parameters  when updating  other 
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parameters; for example, if we update β0 in the first step, then the new value generated will be 
used in the subsequent steps to update β1 and σ2. It can be shown that sampling from these 3 
distributions  in  turn produces  (dependent)  chains  from the  posterior  distribution,  and  when 
conjugate priors are used, then the forms of the 3 conditional posterior distributions are known 
distributions that can easily be simulated from (2 normals and an inverse gamma). To run the 
Gibbs sampling algorithm requires choosing starting values for the 3 unknown parameters and 
then performing a burn-in as described earlier,  until  the chains have moved away from the 
starting values and are sampling from the posterior distribution.

The beauty of MCMC algorithms is that because they consist of a series of steps to update 
individual  parameters,  it  is  easy  to  fit  expanded  models  by  including  additional  steps  and 
modifying existing steps.  Let  us expand the above model by including random effects,  say 
corresponding to measures on individuals clustered in groups:

Y ij=01 X iju jij , u j ~ N 0,u
2 , ij ~ N 0,2

We have added 2 extra sets of parameters, the cluster effects uj and their variance u
2 , and so 

we now have 2 additional steps to the algorithm. By expressing the cluster effects as random, 
we have given them a prior distribution (normal); thus, we only need to include an additional 
prior for u

2  which we would normally give a conjugate inverse gamma prior. The existing 
steps will also be modified as the cluster effects need to be conditioned on. Our Gibbs sampling 
algorithm therefore simulates from the following distributions in turn:

f 0∣Y ,u ,1 ,2 , f 1∣Y , u ,0 ,2 , f u j∣Y ,0 ,1 ,u
2 , 2, j=1, , J ,

f  u
2∣u j and f  2∣Y , u ,0 ,1

Here we see that there is actually one step for each cluster effect (as we loop over j), but these 
are all of the same form, and there is one step for the variance. You will also note that some 
steps  are  not  conditioning on all  the other  variables,  for  example the cluster  variance  only 
conditions  on  the  cluster  effects.  This  is  because  some  of  the  variables  are  conditionally 
independent—effectively here the variance only appears in the prior distribution of the random 
effects  and  so  is  conditionally  independent  of  all  other  parameters.  All  of  the  above 
distributions are either normal or inverse gamma distributions, and so are easily simulated from. 
As an additional simplification, we would often combine the intercept and slope into a vector 
(β) and update them together as this vector will have a multivariate normal conditional posterior 
distribution.

24.3.3 Gibbs and Metropolis-Hastings sampling for non-normal models

In the previous section, we showed how the Gibbs sampling algorithm works by constructing 
the conditional posterior distributions for each group of parameters and taking simulated draws 
from each  distribution in  turn.  Let  us  consider  here  a  different  model,  namely the  logistic 
regression model for binary responses (Chapter 16): 

p Y i=1= pi , logit  pi =01 X i

To convert this model to a Bayesian framework, we should choose priors for the unknown β- 
parameters. As these parameters can take values on the whole real line, a common choice is a 
normal prior distributions with mean 0 and a small precision (ie a large variance). 
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The conditional posterior distributions for a similar development of the Gibbs sampler as above 
(eg f  (β0|Y, β1))  in this case don’t  equate to standard  statistical  distributions and so are  too 
difficult to simulate from directly. There is a technique built on rejection sampling known as 
adaptive rejection (AR) sampling (Gilks and Wild, 1992), which can be used for certain non-
standard distributions to circumvent the problem; the WinBUGS software has the option to use 
this technique in logistic regression models. 

The other technique commonly used and implemented in both MLwiN and WinBUGS (as the 
default method in many models, including logistic regression) is Metropolis-Hastings sampling. 
In Metropolis-Hastings sampling we do not simulate from the conditional posterior distribution, 
but  instead  simulate  from a  proposal distribution.  The  simulated  parameter  is  then  either 
accepted  or  rejected,  and  the  accept/reject  rule  ensures  that  the  technique  is  equivalent  to 
sampling from the correct  conditional posterior distribution. Metropolis-Hastings is different 
from AR sampling in the way it deals with a rejected proposed value: in Metropolis-Hastings 
sampling, the parameter value from the last iteration is carried over, whereas for AR sampling 
the procedure is rerun until a value is accepted. The proposal distribution can be of almost any 
form, provided that all feasible parameter values can be reached in a finite number of iterations 
and that the proposal distribution doesn’t force oscillating behaviour in the chain (known as 
aperiodicity).

Let’s  indicate  how Metropolis-Hastings  sampling  works  for  a  general  parameter  θ and  its 
posterior distribution p(θ|Y). The proposal distribution may depend on the current value of the 
chain; let q(θ|θt) be the proposal distribution given the current value θt at iteration t. If we draw 
(simulate) the value θ* from q(θ|θt) at iteration (t+1), we accept this new value with probability

* ,t =min1,
p * |Y q t |*
p t |Y q * | t  Eq 24.4

In practice, this means that we draw another random number from a uniform distribution on 
(0,1) to decide whether to accept the proposal or not: if this random number exceeds α(θ*,θt), 
the proposal  is not accepted and the chain stays  put (ie θt+1=θt). The acceptance probability 
involves  2 ratios,  the ratio of  the posteriors  for  the proposed and current  variables  and the 
Hastings ratio, which is the ratio of probabilities of the proposed move against its reverse and 
accounts for non-symmetric proposals. One of the most common Metropolis-Hastings samplers 
is the random walk Metropolis algorithm where we use a normal proposal distribution centred 
around the current  value and with a fixed variance.  This proposal  is  symmetric  and so the 
Hastings ratio in the above is not required (as it always takes value 1).

We end this brief introduction into construction of Markov chains for MCMC estimation by 
noting that despite all the methods described being (theoretically) ‘correct’, their utility for a 
specific model may be very different.  In  addition to the ease with which the chains can be 
simulated, the chains may also not take the same time to reach the target distribution, and may 
have different degrees of correlation (it is desirable to have as little correlation in the chains as 
possible). This raises the need for diagnostics to assess the utility of the MCMC estimates, one 
of the topics of the next section. Generally speaking, Metropolis-Hastings samples are easy to 
generate but may lead to more correlated chains, partly due to the fact that rejected proposals 
result  in  the  chain  not  moving.  Also,  different  algorithms  may be  combined  for  different 
parameters—another  feature  of  MCMC which  makes  the  set  of  MCMC techniques  a  very 
flexible framework for fitting statistical models.
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24.4 STATISTICAL ANALYSIS BASED ON MCMC ESTIMATION

In the previous section we described in detail the algorithms that can be used within MCMC 
estimation. In this section we will begin by looking at how we perform an actual  Bayesian 
analysis. Here we will answer questions such as, how long do we run our MCMC sampler for?; 
and how do we summarise our estimates?

24.4.1 MCMC in practice: logistic regression

In Example 24.3, we consider a logistic regression model fitted to the low birth weight dataset 
in Example 16.2. To translate the logistic regression model to a Bayesian framework, we have 
included uniform (improper) priors for all the fixed coefficients. To fit a statistical model using 

Example 24.3 Fitting a logistic regression model using MCMC in MLwiN
data = bw5k

The table below presents results of the standard MCMC (in MLwiN) fitting of a logistic regression 
model to the low birth weight dataset. To the left, we show results after 5,000 iterations following a 
burn-in of 500 iterations; to the right, results after a longer run of 100,000 iterations. 

Estimation After 5,000 iterations After 100,000 iterations

Predictor mean SD 2.5% 50% 97.5% mean SD 2.5% 50% 97.5%

smk 0.520 0.175 0.161 0.524 0.838 0.520 0.184 0.149 0.521 0.871

white -0.302 0.175 -0.659 -0.297 0.047 -0.321 0.182 -0.677 -0.320 0.038

frace=hisp -0.407 0.193 -0.792 -0.407 -0.032 -0.435 0.203 -0.841 -0.434 -0.043

frace=black 0.217 0.181 -0.156 0.219 0.559 0.193 0.194 -0.193 0.194 0.575

previs -0.056 0.015 -0.089 -0.055 -0.027 -0.059 0.014 -0.087 -0.059 -0.031

constant -1.734 0.217 -2.150 -1.743 -1.257 -1.680 0.238 -2.143 -1.683 -1.203

The posterior means and standard deviations (for 100,000 iterations) are very close to the ML estimates 
and standard errors in Example 16.2. We see some change in the estimates between 5,000 and 100,000 
iterations,  in  particular for  the 3 parameters  related to  race and for  the constant,  and all  posterior 
distributions widened, suggesting that we needed the longer run length to get accurate estimates and 
probability  intervals.  Note As  the  estimation  procedure  involves  simulation,  the  actual  values  are 
always subject to random noise. The posterior means and medians are close because all distributions 
are fairly symmetrical (a result of the large dataset). For roughly symmetrical distributions, it makes no 
big difference whether  one reports the posterior mean or median.  The Bayesian approach does not 
provide P-values for tests of the individual coefficients, but one may assess their ‘significance’ (this 
term has no well-defined meaning in Bayesian statistics) by the location of the value 0 in the posterior 
distribution. If the distribution includes a substantial range of values both below and above zero, one 
could say that there is ‘no evidence’ against the value being zero (but it could also be negative or 
positive), see the parameter for -frace-=black for an example. If, on the other hand, the distribution is 
well above zero, and the 95% credible interval does not include zero, one could say there is evidence 
that  the  parameter  is  greater  than  zero;  the  parameter  for  -smk-  illustrates  this  situation.  As  an 
intermediate case, the coefficient for -white- is negative but the upper bound of the credible interval 
slips just above zero. In classical statistics this would indicate a P-value just above 0.05, and we could 
choose to interpret it in the same way after Bayesian estimation, though without formal justification.
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MCMC, we then first need to specify starting values for all unknown parameters. It seems natural 
to use the estimates from ‘classical’ estimation (as is done in the MLwiN software). In this case, 
the estimates from Example 16.2. MLwiN uses a Metropolis-Hastings algorithm for a logistic 
regression model, and so we also need to decide on proposal distributions for each parameter. 
Here, MLwiN uses scaled-up standard errors from the classical methods, and an adapting method 
that  tunes  the  proposal  variances  to  get  a  desired  acceptance  rate  (ie the  rate  of  Metropolis-
Hastings proposals accepted) for each parameter (see Browne (2012) for more details).

As in Example 24.3, we could assess the robustness of our MCMC results to the settings of the 
estimation (such as the starting values, length of burn-in period, and run length) by comparing 
results  from  different  scenarios.  In  practice,  this  is  cumbersome  and  difficult  to  do  in  a 
systematic  way,  and  it  also  provides  little  insight  into  potential  problems with  the  chains. 
Instead we largely rely on MCMC diagnostics, a set of descriptive tools and statistics based on 
the actual chain for each parameter obtained in a single run. These diagnostics should allow us 
to detect major flaws with the chains (and therefore, with the estimates derived from them) and 
guide us to a suitable run length. The diagnostics offered by different software packages vary to 
some extent; we’ll focus on the most common features as well as a few useful special features 
of MLwiN. Note There is one set of diagnostics for each parameter, and the behaviour of the 
chains will usually differ substantially between parameters.

Before  presenting  the  diagnostics,  let’s  recap  the  key  issues  to  consider  when  running  an 
MCMC estimation algorithm. First, we need to be sure that the start of the chain we are using 
for our inference has converged to the desired posterior distribution. To this end, we may need 
to adjust the burn-in length to throw away more iterations that may occur prior to convergence. 
In this example, we started from the classical (maximum likelihood) estimates which should be 
very close to the mode of the posterior, and hence convergence should be almost instantaneous 
and not an issue. In more complex models which are difficult to fit using classical methods, we 
cannot use ‘good’ starting values, and so ensuring the algorithm has burned in is important. The 
standard diagnostic procedure is to use multiple chains from spread out starting values to ensure 
that not only has the algorithm converged, but that the chains converge to the same place, and 
hence that the posterior is unimodal (ie has only one peak). The WinBUGS software offers the 
user  the  opportunity  to  run  multiple  chains  and  compute  the  modified  Gelman-Rubin 
convergence  diagnostic  (Brooks  and  Gelman,  1998).  If  the  diagnostic  doesn’t  appear  to 
converge, then by inspection of the chains we may diagnose multimodality. In this situation, 
increasing the run length will not help matters although, in most other cases, increasing run 
length should result in eventual convergence and more accurate estimates. Fortunately, in most 
modelling situations covered in this book, posterior multimodality would be very unusual.

The second consideration with regard to run length is that, after convergence, we should run 
long enough to give accurate estimates. Given the autocorrelated nature of the chains produced, 
the desirable run length will depend on required parameter accuracy and the magnitude of the 
autocorrelation: the larger the autocorrelation, the less information in the contained sample of 
the chain, and the larger sample size required.  Example 24.4 displays  the autocorrelation as 
well as other MCMC diagnostics for some of the chains behind the results in Example 24.3.

The diagnostic displays in Example 24.4 contain 7 panels that we will consider in turn. The 
trace plot in the upper left panel shows the whole MCMC chain that has been run. In Fig. 24.3, 
we can see that the chain wanders fairly slowly around the posterior and, for example, only 
explores very high values in a few stints (eg around 4,600 iterations). Fig. 24.4 is a much better 
looking chain where the bulk of the posterior is explored in every small subsection of the chain. 
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Example 24.4 MCMC diagnostics in MLwiN
data = bw5k

Figs.  24.3 and 24.4 show MCMC diagnostics  for  the constant (intercept) parameter  of the logistic 
regression model of Example 24.3 after 5,000 iterations and 100,000 iterations, respectively.

(continued on next page)

Fig. 24.3 MCMC diagnostics for logistic regression intercept after 5,000 
iterations

Fig. 24.4 MCMC Diagnostics for logistic regression intercept after 100,000 
iterations
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The upper right hand panel contains a kernel density plot of the posterior distribution, which is 
a kind of smoothed histogram and is in fact the desired summary of the posterior distribution. In 
both Figs 24.3 and 24.4, the plot looks roughly symmetric and bell-shaped, although Fig. 24.3 
appears slightly less symmetric with a flatter peak, presumably due to not enough iterations 
being performed. 

The  next  2  panels  contain  the  autocorrelation  function (ACF)  and  partial  autocorrelation 
functions  (PACF) (these  functions  were  introduced  in  Section 14.11).  The ACF shows the 
correlation between each iteration and one that is lagged by a specified number; in particular, 
the ACF value at lag 1 is the estimated correlation between Xt and Xt+1 across the chain. Ideally, 
the ACF values  should be  zero  for  independence  but  the  ‘ski-ramp’ appearance  we see  is 
symptomatic of a poorly (or slowly) mixing chain, where ‘mixing’ refers to the ability of the 
chain to traverse all parts of the distribution. The first order autocorrelation (ie at lag 1) is 
around 0.98, and even chain values around 40 iterations apart have a correlation of 0.5. The 
PACF is useful mostly to confirm that the chains are truly Markovian and the behaviour we see
—a large peak at lag 1 followed by virtually zero values for other lags—confirms this.

The third row panels contain accuracy diagnostics. The left panel shows a graph estimating the 
Monte Carlo standard error (Section 24.3.1) of the posterior mean estimate for various potential 
iterations. The MCSE is an indication of the precision of the estimated posterior mean and this 
panel allows users to calculate how long to run for a desired MCSE. The other diagnostics are 
the Raftery-Lewis (Raftery and Lewis, 1992) and Brooks-Draper diagnostics, which both aim to 
give a suggested run length to the user. The Raftery-Lewis diagnostic is based on estimating a 
particular quantile (or percentile) of the distribution with specified accuracy;  Fig. 24.3 gives 
estimated required run lengths (‘Nhat’) of about 40,000 and 67,000 iterations for estimation of 
the 2.5% and 97.5% quantiles within 0.005 (with 95% probability). In poorly behaved chains, 
one  sometimes  encounters  the  paradoxical  situation that  increasing  the  run  length  leads  to 
further increased required run lengths, but in Fig. 24.4, the required run lengths are well below 
the actual run length, so we have satisfied the diagnostic. The Brooks-Draper diagnostic instead 
looks at  estimating the posterior  mean to a given accuracy;  we see that  only about 10,000 
iterations would appear sufficient to estimate the intercept mean with 2 correct significant digits 
(ie -1.7) with probability at least 95% (=1-0.05). Note the difference between significant digits 
and decimal places—it would take many more iterations to get 2 decimal places (~3 significant 
digits) correct for the intercept.

Most of the summary statistics in the final panel we have already used for Example 24.3. The 
mode is computed as the peak of the kernel smoothed density curve. The effective sample size 
(ESS) diagnostic provides an indirect measure of the correlation in the chains. It is defined as:

Example 24.4 (continued)

As the 2 figures depict different segments of the same chain, the similarity between them is no surprise. 
The trace plot in the upper left corner looks much more dense for the longer chain, simply because of 
the larger number of observations; also, the autocorrelation function (ACF) in the left middle panel is 
more smooth for the longer chain. The accuracy diagnostics in the lower right panel are different but of 
similar magnitude in the 2 figures. The suggested run lengths based on these diagnostics (‘Nhat’ in the 
listing) are greater than 5,000 and less than 100,000; that is, in the first instance the diagnostics suggest 
running for longer than 5,000 iterations, and in the second instance they indicate that extension beyond 
the actual 100,000 iterations is not necessary. See the text for explanation of the individual plots and 
statistics.
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ESS=n/ , with =12∑
i=1

∞

 i ,
Eq 24.5

where n is the number of iterations run, and ρ(i) is the estimated autocorrelation for lag i. For 
practical calculation, the sum is approximated by stopping when a value of i is reached where 
ρ(i)<0.1.  A  basic  interpretation  of  the  ESS is  as  the  number  of  independent  samples  that 
contains equivalent information to the dependent sample from the Markov chain. In Fig. 24.4, 
the 100,000 actual iterations corresponded to an ESS of only 908 samples, thus reflecting the 
large autocorrelation in the chain.

24.4.2 MCMC in practice: linear mixed model

Our first example was for a non-normal response model, which required us to use Metropolis 
sampling  and  hence  run  the  chains  for  longer.  We  further  illustrate  the  use  of  MCMC 
techniques for random effects models by the 3-level random intercept model for blood pressure 
of Chapter 23 (Example 23.5). Inclusion of error correlation structure is certainly possible in 
Bayesian analysis, but we prefer the simpler model here to avoid technical discussions of prior 
distributions on matrices. All prior distributions were taken as non-informative using the default 
values of the MLwiN software: the fixed effects parameters were modelled by uniform priors, 
and the 2 variances were given inverse gamma priors. Details of the estimates obtained using 
both Gibbs sampling and Metropolis-Hastings sampling are given in Example 24.5 to illustrate 
the differences between the methods. 

One  aspect  of  MCMC  sampling  that  is  really  a  major  advantage  of  all  simulation-based 
techniques,  is the ability to derive posterior distributions and hence,  also point and interval 
estimates  for  other  derived  quantities  in  a  model.  In  Fig.  24.5,  we  consider  the  variance 
partition coefficient (VPC) introduced by Goldstein et al (2002b) that we have also referred to 
informally as  the  proportion  of  variance  explained  at  different  levels  in  previous  chapters. 
Recall  that  a  VPC in  certain  models,  eg the  2-level  random intercept  model,  can  also  be 
interpreted as an ICC (Sections 21.2.1 and 22.2.3). In the 3-level model for blood pressure, the 
VPC for subjects (patients) is the proportion of variance at the patient level, computed by the 
formula:

VPC= p
2 / c

2 p
2 2 Eq 24.6

When using REML estimation in previous chapters, we obtained a point estimate for the VPC 
by simply substituting the point estimates for the variances into such formulae. As MCMC is a 
simulation-based method, we can go one step further and employ the above formula at each 
iteration of the chain, thereby producing an entire new chain for the  VPC variable. Fig. 24.5 
shows the diagnostics for the VPC variable based on the Gibbs sampling method in Example 
24.5. We note that the posterior mean estimate (0.461) is almost identical to the value obtained 
by  directly  plugging  the  variance  posterior  means  into  the  VPC formula:  35.55/
(4.95+35.55+36.46)=0.462.  We also see  that  the posterior  distribution for  this  parameter  is 
symmetrical (Note VPC values close to 0 or 1 tend to have a skewed distribution), and we can 
get a 95% credible interval of (0.388,0.535).

24.5 EXTENSIONS OF BAYESIAN AND MCMC MODELLING

The examples in the previous section demonstrated that good agreement between likelihood-
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based and Bayesian estimation with non-informative priors can be achieved (without asserting 
this to always  be the case).  One additional  advantage  of  the Bayesian approach is  that  the 
models can quite easily be extended to include, for example, non-normal random effects and 
further structure in the data. In this section, we will discuss several model extensions that can be 
handled using MCMC.

24.5.1 Cross-classified and multiple membership models

In Chapter 20, we introduced the concept of a cross-classified data structure and contrasted it 
with the hierarchical data structure predominantly encountered in the previous chapters. Here 
we describe another complex data structure and demonstrate how a Bayesian MCMC approach 
may  help  when  dealing  with  complex  data  structures.  We  follow  in  part  the  multiple 

Example 24.5 Bayesian MCMC analysis of blood pressure data
data = bp

Two MCMC analyses were carried out for a 3-level random intercept model for the blood pressure 
data. One analysis used Gibbs sampling (the recommended method for linear mixed models), the other 
used (univariate) Metropolis-Hastings sampling (for fixed parameters). In theory, both procedures are 
valid provided convergence of the chains. In the table below, we also show the linear mixed model 
estimates (similar to those presented in Example 23.5 for a model with autocorrelated errors).

Method Mixed model Bayesian mixed model and MCMC

Option REML estimation Gibbs Sampling Metropolis-Hastings

Parameter Estim. SE Estim.* (SE #) ESS Estim.* (SE #) ESS

tx = Nifedipine -1.243 0.975 -1.260 (0.983) 2.8k -1.295 (0.980) 1.4k

tx = Atenolol -3.001 0.965 -2.988 (0.974) 2.5k -3.047 (0.957) 1.3k

visit = 4 -0.994 0.509 -1.000 (0.507) 19.6k -0.990 (0.510) 6.9k

visit = 5 -2.643 0.516 -2.648 (0.515) 19.7k -2.640 (0.516) 6.8k

visit = 6 -3.113 0.522 -3.115 (0.526) 19.9k -3.114 (0.525) 7.0k

dbp1c 0.474 0.086 0.475 (0.087) 2.6k 0.473 (0.087) 3.8k

constant 94.69 0.89 94.62 (0.90) 1.7k 94.69 (0.92) 0.8k

centre variance 4.82 2.52 4.95 (2.88) 1.4k 5.01 (2.92) 6.4k

patient variance 35.02 3.97 35.55 (4.12) 6.3k 35.50 (4.10) 32.0k

error variance 36.34 1.82 36.46 (1.86) 10.3k 36.46 (1.83) 55.2k
*mean of posterior distribution; #standard deviation of posterior distribution; ESS=Effective Sample Size (k=1000s)

The Gibbs-sampled chain converged more rapidly and showed less correlation, so only 20,000 samples 
were used for estimation after a burn-in of 10,000 samples. The Metropolis-Hastings chain showed 
high correlation for  all  of the fixed  parameters and therefore,  estimation was extended to 100,000 
samples. Overall, the agreement between the 3 sets of estimates and their standard errors (or posterior 
standard deviations) is good. The 2 upper level variances are estimated at slightly higher values by the 
Bayesian methods than REML estimation. The minor differences for treatment parameters could, with 
the fairly low effective sample sizes for  the MCMC estimates,  be due to sampling variability (the 
MCSEs were around 0.02). We can see that even though the actual Metropolis-Hastings runs are 5 
times as long, the ESS for almost all fixed effects is less than for Gibbs sampling. 
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membership multiple classification (MMMC) framework of models described by Browne et al 
(2001a) and borrow an example from that paper.

Recall  that  a  cross-classification  exists  when  each  observation  (observational  unit)  can  be 
included under 2 (or more) classifications that are not nested (hierarchical) within each other 
(Section 20.2). In addition to the health care examples discussed in Chapter 20, we could also 
imagine  health  or  test  performance  measurements  on  children  in  secondary  school,  cross-
classified by their primary and secondary schools. A cross-classified linear mixed model for a 
continuous measure would then take the form shown in Eq 21.9. In a Bayesian framework, we 
would typically use standard inverse gamma distributions as priors for the variance parameters. 
Cross-classified models can be more difficult to fit in some classical statistical algorithms that 
rely on the block-diagonal matrix structures, that exist in nested models, for speed. However, as 
MCMC algorithms consist of updating parameters in individual conditional steps, they are not 
affected in the same way by cross-classified structures. 

The other model extension contained in MMMC models is the multiple membership model. 
Here,  we remove the restriction of  a  one-to-one relationship between an observation and a 
classification unit. These structures are useful for accounting for changing group membership. 
For example, patients may change family doctors or children may change school over time and 
hence  (historically)  belong  to  several  units,  each  of  which  might  influence  their  current 
response.  The natural  way to  model  this  is  to  give  weightings  to  each  clustering unit  that 
influences  the  observation,  with  these  weightings  summing  to  1.  Such  models  induce  a 
complicated correlation structure that is difficult to fit by classical procedures without relying 
on crude maximisation of the likelihood function (which may be numerically ineffective). We 
will show in Example 24.6 how to include multiple memberships (and cross-classifications) in 
an example from Denmark on Salmonella incidence in chickens.

To finish this section it should be noted that the MMMC modelling framework can also be used 
for  modelling  spatial  effects  (Browne  (2012),  Chapter  17),  and  that  MCMC  methods  are 
particularly useful for spatial modelling (Chapter 26).

Fig. 24.5 MLwiN diagnostic plot for variance partitioning coefficient parameter 
from Example 24.5 and Eq 24.6
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24.5.2 Missing data

We supplement our brief discussion of missing data in Section 15.5 by outlining the Bayesian 
approach to missing data. From an MCMC and Bayesian perspective, missing data are handled 
in a modelling approach where the missing data are treated as additional  parameters  in the 
model. For missing response variables, we already have a distribution for them and so they can 
be simulated as an extra step in the model. For missing predictor variables, an additional prior 
distribution is  required  for  the  missing values.  The  type  of  missing  predictor  variable  will 
influence  the  form  of  the  prior  distribution  and  care  has  to  be  taken  for  example  with 
categorical predictors to ensure that the prior distribution is given for the original categorical 
predictor,  rather  than  the  dummy variables  that  are  actually  fitted  in  the  model.  Bayesian 
approaches to missing data are dealt  with in separate  chapters in both  Congdon  (2007) and 
Gelman et  al (2004) which  give  more  details  on  how  this  is  achieved.  Bayesian  MCMC 
methods  have  also  proved  to  be  particularly  useful  for  complex  modelling  of  informative 
missing data mechanisms (eg Carpenter et al (2002); Mason et al (2012)).

Example 24.6 Salmonella in Danish chickens

Browne et al (2001a) examined a dataset provided by Mariann Chriel, where the interest lies in the 
causes  and  sources  of  variability  in 
Salmonella outbreaks  in  poultry  farms 
from  1995  to  1997.  The  observation 
level  in  this  situation  is  a  flock  of 
chickens (for meat), and over the 3 years 
10,127  flocks  were  observed.  There 
were  2 separate  levels  of  clustering to 
consider  in  the  modelling.  First,  the 
production  hierarchy  in  which  the 
production  flocks  were  nested  within 
chicken  houses  (of  which  there  were 
725),  which  again  were  nested  within 
farms  (304).  Second,  the  breeding 
hierarchy,  in  which  there  were  200 
breeding (parent) flocks (in Denmark at 
that  time) which produce the eggs that 
created  the  production  flocks.  The 
precise  proportions  of  chickens  that 
came from each parent flock (up to 6) to make up the production flock were known.

Our binary response variable indicates whether the flock had Salmonella isolated, and we also have 2 
additional predictor variables, namely the year of the flock and the hatchery from which the flock were 
hatched. The model for flock i can be written as follows:

pi=P Y i=1 , and logit  pi= X i ∑
j∈parent flock i

w ij
2 u j

2uhouse i
3 ufarm i 

4 ,

with u j
2~ N 0,u 2

2  , uh
3~ N 0, u3

2  ,u f
4 ~ N 0, u4

2  ,

where w ij
2 is the proportion of chickens in flock i originating from parent flock j, and independence of 

all random effects is still assumed. The associated classification diagram is shown in Fig. 24.6; here we 
use a double arrow to represent a multiple membership relationship. 

(continued on next page)

Fig. 24.6 Classification diagram for Danish chicken 
salmonella data
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24.5.3 Measurement errors and imperfect tests

Measurement  error modelling was discussed in Chapter 12 and several  classical  approaches 
were mentioned there. In the Bayesian world, we would think of measurement error modelling 
as a missing data problem, as the true values are missing and we instead observe a value that 
contains errors. Browne et al (2001b) give an MCMC algorithm for adjusting for measurement 
errors in continuous predictors in a multilevel modelling situation. Their example model for a 
2-level  structure and a single  continuous predictor  (X)  is  given below in a  simplified form 
(omitting the random slope for X):

Y ij=01 X iju j ij , with
u j~N 0,u

2 ,ij~N 0,2 and X ij
o~N  X ij ,m

2  , X ij~N  ,2

Here the multilevel model is defined in terms of the true (unobserved) predictor values Xij, with 
a distribution given for the link between the observed values X ij

o
 and the true predictor values, 

and  a prior  distribution for  the latter.  A simulation study showed that  if  the  magnitude  of 
measurement  error  ( m

2 )  is  known,  then the correct  parameter  estimates  can be recovered. 
Congdon (2007) gives several other examples of the use of MCMC estimation for accounting 
for measurement errors.

When  measurement  errors  occur  in  categorical  variables  we  normally  call  them 
misclassifications. These misclassifications are commonly studied in epidemiology when we 

Example 24.6 (continued)

Results  of  fitting  this  model  using  both  Metropolis-Hastings  sampling  in  MLwiN  and  adaptive 
rejection sampling in WinBUGS are given in the following table:

MCMC sampling Adaptive rejection Metropolis-Hastings

Parameter Estimate* (SE#) Estimate* (SE#)

constant -2.330 (0.208) -2.329 (0.216)

year=1996 -1.242 (0.164) -1.238 (0.165)

year=1997 -1.163 (0.193) -1.159 (0.194)

hatchery=2 -1.733 (0.255) -1.730 (0.259)

hatchery=3 -0.200 (0.252) -0.201 (0.247)

hatchery=4 -1.054 (0.380) -1.056 (0.381)

parent flock variance σ2
u(2) 0.890 (0.181) 0.884 (0.182)

house variance σ2
u(3) 0.202 (0.113) 0.199 (0.112)

farm variance σ2
u(4) 0.924 (0.193) 0.922 (0.203)

* mean of posterior distribution; # standard deviation of posterior distribution

Here  we  see  good  agreement  between  the  2  MCMC  methods  and  the  following  substantive 
conclusions: that Salmonella was greater at the start of the study (1995) than in the 2 following years; 
that hatcheries 1 and 3 had substantially higher levels of Salmonella than hatcheries 2 and 4. We also 
see that there are large effects from the parent flocks used and from the farm on which the chickens are 
housed, but smaller effects for houses within farms.



694 INTRODUCTION TO BAYESIAN ANALYSIS

consider diagnostic tests, as sensitivity and specificity are quantifiers of the proportions of the 2 
forms  of  misclassification  possible  in  a  binary  outcome  variable.  The  aim  of  including 
misclassification  in  the  modelling  may  be  to  estimate  the  diagnostic  test  characteristics 
(discussed in the next section) or to adjust a regression or mixed model for the imperfect test 
characteristics.  McInturff  et  al (2004) reviewed  the  Bayesian  methodology  involved  in  a 
multiple logistic regression with misclassification and illustrated this with an example from 
human health with fairly strong priors for both misclassification rates. Kostoulas  et al (2009) 
used MCMC methods to adjust estimates of the variance partition coefficient (VPC) when faced 
with an imperfect test for (animal) disease. 

24.5.4 Latent class models for diagnostic test evaluation

In  this section, we supplement the review of latent  class models in Section 5.8 with a few 
comments  on  the  Bayesian  approach  and  add  the  Bayesian  equivalent  of  the  maximum 
likelihood analysis in Example 5.12. Bayesian methods for imperfect tests were introduced in 
the early 1990s when MCMC methods were still in their infancy (Johnson and Gastwirth, 1991; 
Joseph et al, 1995), and have since become the standard analytical approach within the field. As 
already mentioned in Chapter 5, the reason for the success of Bayesian methods lies primarily 
in their ability to both include prior information and tackle complex estimation problems. Test 
sensitivity and specificity are prime examples of parameters where one would often have access 
to substantial prior information from previous work within the same or a similar population or 
from the published literature in general. Unless one was indeed faced with a new and untested 
diagnostic procedure, a truly Bayesian approach would not use the uniform prior distribution 
(from Example 24.1) for sensitivity and specificity. It is customary to specify the prior as a beta 
distribution,  and  tools  exist  to  determine  its  2  parameters  (a,b)  from  more  intuitive 
characteristics of the distribution. The BetaBuster software is downloadable from the diagnostic 
tests from the Bayesian Epidemiologic Screening Techniques (BEST) website referenced at the 
end of this section, and allows specification by the mode and a percentile. An algebraic formula 
can give the values of (a,b) from the distribution’s mean (μ=a/(a+b)) and variance (σ2=μ(1-μ)/
(a+b+1)), but these are less intuitive to specify than the mode and a percentile. A restricted 
form of the beta distribution, determined only from its mode, minimum, and maximum (if these 
differ from 0 and 1, respectively) is often used in risk analysis, and in this context bears the 
name Pert distribution (eg Vose (2008)). Uniform prior distributions are sometimes justified by 
referring  to  the  previously  discussed  ‘correspondence’ between  frequentist  and  Bayesian 
analyses  (with  uniform  priors),  although  devoted  Bayesians  will  turn  this  around  as  an 
argument against a frequentist approach when prior information is available.

In the context of latent class models, the ability of Bayesian methods to tackle more complex 
estimation  problems  relaxes  the  requirement  for  separate  ‘populations’ with  different 
prevalence (Section 5.8.1), which is unnatural unless built into the sampling design, and allows 
for inclusion of conditional dependence between tests (Section 5.8.7). Three explanations can 
be offered of this increase in scope by MCMC estimation in a Bayesian framework; the most 
obvious  one  is  that  genuine  prior  distributions  provide  extra  information  on  which  the 
estimation can be based. More technically, the estimation avoids searching for the maximum of 
a  potentially  very  difficult  function  to  maximize  (eg the  likelihood  function  may  be 
multimodal),  and  a  non-uniform prior  distribution usually  exerts  a  smoothing  of  the  target 
function  (the  posterior  density)  which  simplifies  the  estimation.  One  word  of  caution:  in 
Bayesian analysis it is required that model parameters are identifiable, so it is not true that any 
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model  (extension)  leads  to  a  meaningful  analysis  by  MCMC  methods.  Loosely  stated, 
identifiability means that the likelihood function or posterior distribution contains the necessary 
information to determine the parameters of the model without ambiguity.  We would usually 
expect  identifiable  ‘frequentist’  models  to  lead  to  identifiable  parameters  in  a  Bayesian 
posterior  distribution  based  on  the  same  likelihood,  while  the  reverse  is  not  true.  Non-
identifiability may be difficult to diagnose directly from the simulated Markov chains, and only 
recently has progress been made towards a better theoretical understanding of the necessary and 
sufficient conditions for identifiability (Jones et al, 2010).

We illustrate this short discussion of Bayesian latent class models by reanalysing the norovirus 
data of Example 5.12 with both uniform and informative prior distributions in Example 24.7. 
We also restate (from Chapter 5) the reference to the BEST website at University of California 
at Davis, which contains a wealth of information (papers and software) on Bayesian approaches 
to diagnostic testing problems which are beyond the scope of the present text; the web address 
is http://www.epi.ucdavis.edu/diagnostictests/. 

24.5.5 Further examples of informative priors and expert opinion

In  this section, we give a few extra examples of the use of informative priors. Green  et al 
(2009) adapted ideas from human clinical practice (in part from Spiegelhalter et al (2004)) to a 
veterinary context in order to quantify how different (synthetic) data scenarios might impact the 
opinions  about  the  effectiveness  of  a  certain  disease  control  program  among  veterinary 
clinicians.  This  was  achieved  through  the  use  of  a  community  of  prior  distributions  that 
incorporated  scepticism,  enthusiasm,  and  uncertainty  of  the  clinicians  to  the  program. 
Comparisons of the prior and posterior distributions yielded information about how changes in 
opinion related to the prior beliefs held.

Informative  prior  distributions  were  also  used extensively  in  work  by  Jewell  et  al (2009) 
involving MCMC methods to predict the progress of infectious disease epidemics, specifically 
an  avian  influenza  epidemic,  in  livestock.  Also  transmission  of  human  disease,  such  as 
influenza (Cauchemez et al, 2004) and gastroenteritis in hospitals (Clancy and O’Neill, 2008), 
has been studied by Bayesian MCMC methods. The area of epidemic modelling is an exciting 
and important one for epidemiologists (see also Chapter 27), and Bayesian statistical modelling 
is likely to play a vital role here.

24.5.6 Improving MCMC algorithms

In this chapter,  we have shown how MCMC methods have revolutionised the estimation of 
Bayesian statistical models. We have also seen that the MCMC modelling framework is very 
flexible and that we can create lots of different MCMC algorithms for the same model. Browne 
et  al (2009) show how, by changing the parameterisation of a model,  we can improve the 
performance  in  terms  of  speed  and  chain  autocorrelation,  including an  application  of  such 
techniques to a model for discontinuation of the use of contraception by women in Indonesia. 
We will (Example 24.8) illustrate here one such technique, hierarchical centring, to refit the 
model in Example 24.5. 
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Example 24.7 Bayesian latent class model estimation of Se and Sp
data = nv

In  continuation of  Example  5.12,  we  show estimates  from a  Bayesian  analysis  of  the  conditional 
independence latent class model for 3 tests and 2 populations (see Chapter 5 for details of the study, a 
full data listing and maximum likelihood estimates of the parameters). Two versions of the Bayesian 
model were run: (A) with all prior distributions taken as uniform on the interval (0,1), and (B) with 
weakly informative priors for all Se and Sp parameters. For the sole purpose of illustrating the use of 
informative priors, we developed a rudimentary prior  ‘belief’ about these by studying the preceding 
literature cited in Fisman et al (2009). One particular (yet not uncommon) difficulty with the previously 
published studies was that they did not use the same version of the tests. Specifically, the commercial 
EIA kit used and real-time RT-PCR were not covered in the references, and our belief had to be based 
on the performance of similar tests. 

All 3 tests appeared to have high  Sp with no clear distinction between them; thus we took the same 
prior Sp for all 3 tests, assuming a mode of 0.95 and 95% certainty that the Sp would exceed 0.80. This 
specification yielded  a beta(21.20,2.06)  distribution in  the BetaBuster software.  The distribution is 
fairly  wide  and  could  be  thought  of  as  ‘weakly  informative’.  Similarly  we  constructed  weakly 
informative priors for the Se of the RT-PCR and EIA tests, from postulated modes at 0.8 and 0.7, and 
95% lower bounds of 0.6 and 0.5, respectively. Finally, reports of low Se for EM tests existed and lead 
us to a mode of 0.35 and a 95% upper bound of 0.6.  The analysis  with either uniform or weakly 
informative priors were carried out using WinBUGS version 1.4 software with 5,000 burn-in samples 
and an estimation chain of 50,000 samples.  The chains  showed only little  autocorrelation,  and all 
MCMC diagnostics were satisfactory.

Median estimates (and 95% credible intervals (CrI)) for Model (A) with all priors uniform on (0,1):
Model (A) Prevalence PCR EIA EM

Low High Se Sp Se Sp Se Sp

Estimate 0.220 0.686 0.960 0.866 0.832 0.953 0.173 0.993

Lower CrI 0.131 0.560 0.879 0.762 0.708 0.885 0.101 0.964

Upper CrI 0.334 0.794 0.998 0.961 0.939 0.994 0.268 1.000

The estimates generally agree well with the MLE (Example 5.12). No Bayesian estimates are on the 
boundary of the interval, and even those estimates close to the boundary have moved inwards. Credible 
intervals are available for all parameters (note that the upper CrI endpoint equal to 1.000 is still strictly 
less than 1 but listed as 1.000 after rounding off to 3 decimals).

Medians (with 95% CrI) for Model (B) with weakly informative priors:
Model (B) Prevalence PCR EIA EM

Low High Se Sp Se Sp Se Sp

Estimate 0.239 0.710 0.935 0.899 0.796 0.958 0.182 0.986

Lower CrI 0.147 0.592 0.859 0.812 0.685 0.902 0.115 0.954

Upper CrI 0.353 0.810 0.982 0.970 0.894 0.991 0.267 0.998

In comparison with model (A) we see minor movements in the centres of the posterior distributions, 
always in the direction of the centre of the corresponding prior distribution. Most posterior distributions 
are slightly narrower with informative priors, but when the data and prior are not centred closely the 
posterior can also become wider (eg the Sp for EM). The main message of the results is perhaps that the 
‘weakly informative’ priors have a real impact on the posterior distributions, and that it therefore is 
critically important that the prior distributions are scientifically well justified (which they weren’t in the 
present exploration for illustrative purposes).



INTRODUCTION TO BAYESIAN ANALYSIS 697

Example 24.8 Hierarchical centring of linear mixed model for blood pressure data
data = bp

Hierarchical centring simply means rewriting a random effects model so that the random effects are 
centred around any cluster level parameters or predictors in the model. The blood pressure model has 2 
hierarchical levels, and by clustering at the top (centre) level we would write the model as

Y ijk=1 X 1ijk6 X 6ijku jkv k
*eijk , u j~N 0,u

2 , vk
*~N 0 ,v

2 , e ijk~N 0,2

Here we moved the intercept β0 from the fixed effects to the distribution of the centre random effects. 
Any predictors at the centre level would have been moved together with the intercept but the model did 
not contain any centre-level predictors; thus, everything else was left unchanged. The centred random 
effects, v k

*, are not the same as the original uncentred random effects, vk, however, by subtracting their 
mean we can easily move between parameterisations. The above centred parameterisation can be fitted 
using Gibbs sampling and will potentially give less correlated chains as there should be less correlation 
between the centred random effects (for centres) and the intercept. We would expect a greater impact 
by centring at  the  patient  level  because 3 fixed  effect  parameters  reside at  this  level  (2  treatment 
parameters and the slope for -dbp1c-). The modelling equation is rewritten in a similar way, with the 
relevant fixed effects moved into the mean of u jk

* . In the table below, we show results for the 2 centred 
parameterisations which can be compared with the uncentred results in Example 24.5. 

Parameterisation Centred at centres Centred at patients

Parameter Estimate* (SE#) ESS Estimate* (SE#) ESS

tx = Nifedipine -1.222 (0.970) 2.9k -1.248 (0.978) 18.9k

tx = Atenolol -2.999 (0.962) 2.7k -3.009 (0.971) 18.9k

visit = 4 -0.995 (0.510) 19.3k -0.990 (0.511) 19.7k

visit = 5 -2.644 (0.513) 19.2k -2.639 (0.518) 19.4k

visit = 6 -3.117 (0.517) 19.4k -3.116 (0.523) 19.5k

dbp1c 0.474 (0.086) 2.6k 0.475 (0.087) 13.8k

constant 94.66 (0.91) 4.0k 94.68 (0.91) 3.7k

centre variance 5.04 (2.88) 1.6k 4.96 (2.85)  1.5k

patient variance 35.50 (4.10) 6.4k 35.53 (4.05) 6.7k

error variance 36.45 (1.84) 11.5k 36 47(1.85) 11.0k
*mean of posterior distribution; #standard deviation of posterior distribution; ESS=Effective Sample Size (k=1000s)

The table shows good agreement between estimates of centred and uncentred (Example 24.5) Gibbs 
sampling.  We also see that the top level centring only improved the estimation moderately for the 
intercept, whereas centring at the patient level improved estimation substantially for the 3 parameters at 
the patient level. It was expected that the patient-level centring would work better because it involved 
more fixed effects parameters and because a larger proportion of variance resided at that level. The 
other parameters, including all the variances, changed only little in terms of ESS because they were 
were not involved in the reparameterisation.
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